Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Med Chem ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991154

RESUMO

This study presents a new approach for identifying myeloperoxidase (MPO) inhibitors with strong in vivo efficacy. By combining inhibitor-like rules and structure-based virtual screening, the pipeline achieved a 70% success rate in discovering diverse, nanomolar-potency reversible inhibitors and hypochlorous acid (HOCl) scavengers. Mechanistic analysis identified RL6 as a genuine MPO inhibitor and RL7 as a potent HOCl scavenger. Both compounds effectively suppressed HOCl production in cells and neutrophils, with RL6 showing a superior inhibition of neutrophil extracellular trap release (NETosis). In a gout arthritis mouse model, intraperitoneal RL6 administration reduced edema, peroxidase activity, and IL-1ß levels. RL6 also exhibited oral bioavailability, significantly reducing paw edema when administered orally. This study highlights the efficacy of integrating diverse screening methods to enhance virtual screening success, validating the anti-inflammatory potential of potent inhibitors, and advancing the MPO inhibitor research.

2.
Parkinsonism Relat Disord ; 116: 105847, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37844348

RESUMO

INTRODUCTION: Progressive Supranuclear Palsy (PSP) is a neurodegenerative tauopathy and, to date, the pathophysiological mechanisms in PSP that lead to Tau hyperphosphorylation and neurodegeneration are not clear. In some brain areas, Tau pathology in glial cells appears to precede Tau aggregation in neurons. The development of a model using astrocyte cell lines derived from patients has the potential to identify molecules and pathways that contribute to early events of neurodegeneration. We developed a model of induced pluripotent stem cells (iPSC)-derived astrocytes to investigate the pathophysiology of PSP, particularly early events that might contribute to Tau hyperphosphorylation, applying omics approach to detect differentially expressed genes, metabolites, and proteins, including those from the secretome. METHODS: Skin fibroblasts from PSP patients (without MAPT mutations) and controls were reprogrammed to iPSCs, further differentiated into neuroprogenitor cells (NPCs) and astrocytes. In the 5th passage, astrocytes were harvested for total RNA sequencing. Intracellular and secreted proteins were processed for proteomics experiments. Metabolomics profiling was obtained from supernatants only. RESULTS: We identified hundreds of differentially expressed genes. The main networks were related to cell cycle re-activation in PSP. Several proteins were found exclusively secreted by the PSP group. The cellular processes related to the cell cycle and mitotic proteins, TriC/CCT pathway, and redox signaling were enriched in the secretome of PSP. Moreover, we found distinct sets of metabolites between PSP and controls. CONCLUSION: Our iPSC-derived astrocyte model can provide distinct molecular signatures for PSP patients and it is useful to elucidate the initial stages of PSP pathogenesis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Paralisia Supranuclear Progressiva , Tauopatias , Humanos , Paralisia Supranuclear Progressiva/diagnóstico , Astrócitos/metabolismo , Proteínas tau/genética , Tauopatias/patologia , Neurônios/metabolismo
3.
iScience ; 26(10): 107824, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37736053

RESUMO

The clinical presentation of COVID-19 is highly variable, and understanding the underlying biological processes is crucial. This study utilized a proteomic analysis to investigate dysregulated processes in the peripheral blood mononuclear cells of patients with COVID-19 compared to healthy volunteers. Samples were collected at different stages of the disease, including hospital admission, after 7 days of hospitalization, and 30 days after discharge. Metabolic pathway alterations and increased abundance of neutrophil-related proteins were observed in patients. Patients progressing to critical illness had significantly low-abundance proteins in the pentose phosphate and glycolysis pathways compared with those presenting clinical recovery. Important biological processes, such as fatty acid concentration and glucose metabolism disorder, remained altered even after 30 days of hospital discharge. Temporal proteomic changes revealed distinct pathways in critically ill and non-critically ill patients. Our study emphasizes the significance of longitudinal cellular proteomic studies in identifying disease progression-related pathways and persistent protein changes post-hospitalization.

4.
J Lipid Res ; 64(6): 100381, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37100172

RESUMO

Patients with chronic kidney disease (CKD) are at high risk for CVD. However, traditional CVD risk factors cannot completely explain the increased risk. Altered HDL proteome is linked with incident CVD in CKD patients, but it is unclear whether other HDL metrics are associated with incident CVD in this population. In the current study, we analyzed samples from two independent prospective case-control cohorts of CKD patients, the Clinical Phenotyping and Resource Biobank Core (CPROBE) and the Chronic Renal Insufficiency Cohort (CRIC). We measured HDL particle sizes and concentrations (HDL-P) by calibrated ion mobility analysis and HDL cholesterol efflux capacity (CEC) by cAMP-stimulated J774 macrophages in 92 subjects from the CPROBE cohort (46 CVD and 46 controls) and in 91 subjects from the CRIC cohort (34 CVD and 57 controls). We tested associations of HDL metrics with incident CVD using logistic regression analysis. No significant associations were found for HDL-C or HDL-CEC in either cohort. Total HDL-P was only negatively associated with incident CVD in the CRIC cohort in unadjusted analysis. Among the six sized HDL subspecies, only medium-sized HDL-P was significantly and negatively associated with incident CVD in both cohorts after adjusting for clinical confounders and lipid risk factors with odds ratios (per 1-SD) of 0.45 (0.22-0.93, P = 0.032) and 0.42 (0.20-0.87, P = 0.019) for CPROBE and CRIC cohorts, respectively. Our observations indicate that medium-sized HDL-P-but not other-sized HDL-P or total HDL-P, HDL-C, or HDL-CEC-may be a prognostic cardiovascular risk marker in CKD.


Assuntos
Doenças Cardiovasculares , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/complicações , HDL-Colesterol , Fatores de Risco , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia
5.
Diabetol Metab Syndr ; 15(1): 42, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36899434

RESUMO

BACKGROUND: Subclinical atherosclerosis is frequently observed in type 1 diabetes (T1D) although the mechanisms and markers involved in the evolution to established cardiovascular disease are not well known. High-density lipoprotein cholesterol in T1D is normal or even high, and changes in its functionality and proteomics are considered. Our aim was to evaluate the proteomics of HDL subfractions in T1D and control subjects and its association with clinical variables, subclinical atherosclerosis markers and HDL functionality. METHODS: A total of 50 individuals with T1D and 30 matched controls were included. Carotid-femoral pulse wave velocity (PWV), flow-mediated vasodilation (FMD), cardiovascular autonomic neuropathy (CAN), and ten-year cardiovascular risk (ASCVDR) were determined. Proteomics (parallel reaction monitoring) was determined in isolated HDL2 and HDL3 that were also utilized to measure cholesterol efflux from macrophages. RESULTS: Among 45 quantified proteins, 13 in HDL2 and 33 in HDL3 were differentially expressed in T1D and control subjects. Six proteins related to lipid metabolism, one to inflammatory acute phase, one to complement system and one to antioxidant response were more abundant in HDL2, while 14 lipid metabolism, three acute-phase, three antioxidants and one transport in HDL3 of T1D subjects. Three proteins (lipid metabolism, transport, and unknown function) were more abundant in HDL2; and ten (lipid metabolism, transport, protease inhibition), more abundant in HDL3 of controls. Individuals with T1D had higher PWV and ten-year ASCVDR, and lower FMD, Cholesterol efflux from macrophages was similar between T1D and controls. Proteins in HDL2 and HDL3, especially related to lipid metabolism, correlated with PWV, CAN, cholesterol efflux, HDLc, hypertension, glycemic control, ten-year ASCVDR, and statins use. CONCLUSION: HDL proteomics can be predictive of subclinical atherosclerosis in type 1 diabetes. Proteins that are not involved in reverse cholesterol transport may be associated with the protective role of HDL.

6.
Arterioscler Thromb Vasc Biol ; 41(8): 2330-2341, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34134520

RESUMO

OBJECTIVE: Niacin therapy fails to reduce cardiovascular events in statin-treated subjects even though it increases plasma HDL-C (HDL [high-density lipoprotein] cholesterol) and decreases LDL-C (LDL [low-density lipoprotein] cholesterol) and triglyceride levels. To investigate potential mechanisms for this lack of cardioprotection, we quantified the HDL proteome of subjects in 2 niacin clinical trials: the CPC study (Carotid Plaque Composition) and the HDL Proteomics substudy of the AIM-HIGH trial (Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglycerides). APPROACH AND RESULTS: Using targeted proteomics, we quantified levels of 31 HDL proteins from 124 CPC subjects and 120 AIM-HIGH subjects. The samples were obtained at baseline and after 1 year of statin monotherapy or niacin-statin combination therapy. Compared with statin monotherapy, niacin-statin combination therapy did not reduce HDL-associated apolipoproteins APOC1, APOC2, APOC3, and APOC4, despite significantly lowering triglycerides. In contrast, niacin markedly elevated HDL-associated PLTP (phospholipid transfer protein), CLU (clusterin), and HP/HPR (haptoglobin/haptoglobinrelated proteins; P≤0.0001 for each) in both the CPC and AIM-HIGH cohorts. CONCLUSIONS: The addition of niacin to statin therapy resulted in elevated levels of multiple HDL proteins linked to increased atherosclerotic risk, which might have compromised the cardioprotective effects associated with higher HDL-C levels and lower levels of LDL-C and triglycerides. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT00715273; NCT00880178; NCT00120289.


Assuntos
Aterosclerose/tratamento farmacológico , Cardiotônicos/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Lipoproteínas HDL/química , Niacina/uso terapêutico , Adulto , Aterosclerose/sangue , Cardiotônicos/farmacologia , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/prevenção & controle , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Lipoproteínas HDL/sangue , Masculino , Pessoa de Meia-Idade , Niacina/farmacologia , Proteômica
8.
Photochem Photobiol Sci ; 19(11): 1590-1602, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33107551

RESUMO

Studies have previously shown that anthracene and naphthalene derivatives serve as compounds for trapping and chemically generating singlet molecular oxygen [O2(1Δg)], respectively. Simple and efficient synthetic routes to anthracene and naphthalene derivatives are needed, for improved capture and release of O2(1Δg) in cellular environments. Because of this need, we have synthesized a dihydroxypropyl amide naphthlene endoperoxide as a O2(1Δg) donor, as well as five anthracene derivatives as O2(1Δg) acceptor. The anthracene derivatives bear dihydroxypropyl amide, ester, and sulfonate ion end groups connected to 9,10-positions by way of unsaturated (vinyl) and saturated (ethyl) bridging groups. Heck reactions were found to yield these six compounds in easy-to-carry out 3-step reactions in yields of 50-76%. Preliminary results point to the potential of the anthracene compounds to serve as O2(1Δg) acceptors and would be amenable for future use in biological systems to expand the understanding of O2(1Δg) in biochemistry.


Assuntos
Antracenos/farmacologia , Naftalenos/farmacologia , Oxigênio Singlete/metabolismo , Antracenos/síntese química , Antracenos/química , Linhagem Celular Tumoral , Humanos , Microscopia de Fluorescência , Estrutura Molecular , Naftalenos/síntese química , Naftalenos/química , Imagem Óptica , Oxigênio Singlete/química
9.
Lipids Health Dis ; 19(1): 205, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32921312

RESUMO

BACKGROUND AND AIMS: Diabetic kidney disease (DKD) is associated with lipid derangements that worsen kidney function and enhance cardiovascular (CVD) risk. The management of dyslipidemia, hypertension and other traditional risk factors does not completely prevent CVD complications, bringing up the participation of nontraditional risk factors such as advanced glycation end products (AGEs), carbamoylation and changes in the HDL proteome and functionality. The HDL composition, proteome, chemical modification and functionality were analyzed in nondialysis subjects with DKD categorized according to the estimated glomerular filtration rate (eGFR) and urinary albumin excretion rate (AER). METHODS: Individuals with DKD were divided into eGFR> 60 mL/min/1.73 m2 plus AER stages A1 and A2 (n = 10) and eGFR< 60 plus A3 (n = 25) and matched by age with control subjects (eGFR> 60; n = 8). RESULTS: Targeted proteomic analyses quantified 28 proteins associated with HDL in all groups, although only 2 were more highly expressed in the eGFR< 60 + A3 group than in the controls: apolipoprotein D (apoD) and apoA-IV. HDL from the eGFR< 60 + A3 group presented higher levels of total AGEs (20%), pentosidine (6.3%) and carbamoylation (4.2 x) and a reduced ability to remove 14C-cholesterol from macrophages (33%) in comparison to HDL from controls. The antioxidant role of HDL (lag time for LDL oxidation) was similar among groups, but HDL from the eGFR< 60 + A3 group presented a greater ability to inhibit the secretion of IL-6 and TNF-alpha (95%) in LPS-elicited macrophages in comparison to the control group. CONCLUSION: The increase in apoD and apoA-IV could contribute to counteracting the HDL chemical modification by AGEs and carbamoylation, which contributes to HDL loss of function in well-established DKD.


Assuntos
Apolipoproteínas A/sangue , Apolipoproteínas D/sangue , Nefropatias Diabéticas/sangue , Lipoproteínas HDL/sangue , Proteoma/metabolismo , Idoso , Idoso de 80 Anos ou mais , Albuminúria/sangue , Albuminúria/genética , Albuminúria/patologia , Apolipoproteínas A/genética , Apolipoproteínas D/genética , Arginina/análogos & derivados , Arginina/sangue , Arginina/genética , Estudos de Casos e Controles , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Feminino , Expressão Gênica , Taxa de Filtração Glomerular , Produtos Finais de Glicação Avançada/sangue , Produtos Finais de Glicação Avançada/genética , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Rim/metabolismo , Rim/patologia , Lipopolissacarídeos/farmacologia , Lipoproteínas HDL/genética , Lisina/análogos & derivados , Lisina/sangue , Lisina/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , Carbamilação de Proteínas , Proteoma/classificação , Proteoma/genética , Diálise Renal , Fatores de Risco , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
10.
Circ Res ; 127(9): 1198-1210, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32819213

RESUMO

RATIONALE: HDL (high-density lipoprotein) may be cardioprotective because it accepts cholesterol from macrophages via the cholesterol transport proteins ABCA1 (ATP-binding cassette transporter A1) and ABCG1 (ATP-binding cassette transporter G1). The ABCA1-specific cellular cholesterol efflux capacity (ABCA1 CEC) of HDL strongly and negatively associates with cardiovascular disease risk, but how diabetes mellitus impacts that step is unclear. OBJECTIVE: To test the hypothesis that HDL's cholesterol efflux capacity is impaired in subjects with type 2 diabetes mellitus. METHODS AND RESULTS: We performed a case-control study with 19 subjects with type 2 diabetes mellitus and 20 control subjects. Three sizes of HDL particles, small HDL, medium HDL, and large HDL, were isolated by high-resolution size exclusion chromatography from study subjects. Then we assessed the ABCA1 CEC of equimolar concentrations of particles. Small HDL accounted for almost all of ABCA1 CEC activity of HDL. ABCA1 CEC-but not ABCG1 CEC-of small HDL was lower in the subjects with type 2 diabetes mellitus than the control subjects. Isotope dilution tandem mass spectrometry demonstrated that the concentration of SERPINA1 (serpin family A member 1) in small HDL was also lower in subjects with diabetes mellitus. Enriching small HDL with SERPINA1 enhanced ABCA1 CEC. Structural analysis of SERPINA1 identified 3 amphipathic α-helices clustered in the N-terminal domain of the protein; biochemical analyses demonstrated that SERPINA1 binds phospholipid vesicles. CONCLUSIONS: The ABCA1 CEC of small HDL is selectively impaired in type 2 diabetes mellitus, likely because of lower levels of SERPINA1. SERPINA1 contains a cluster of amphipathic α-helices that enable apolipoproteins to bind phospholipid and promote ABCA1 activity. Thus, impaired ABCA1 activity of small HDL particles deficient in SERPINA1 could increase cardiovascular disease risk in subjects with diabetes mellitus.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Doenças Cardiovasculares/etiologia , Colesterol/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Lipoproteínas HDL/metabolismo , alfa 1-Antitripsina/metabolismo , Apolipoproteína C-II/análise , Apolipoproteínas/metabolismo , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/sangue , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Fosfolipídeos/metabolismo , Estrutura Terciária de Proteína , Risco , Triglicerídeos/análise , alfa 1-Antitripsina/química
11.
Free Radic Biol Med ; 156: 157-167, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32598986

RESUMO

Unsaturated lipids are oxidized by reactive oxygen species and enzymes, leading to the increased formation of lipid hydroperoxides and several electrophilic products. Lipid-derived electrophiles can modify macromolecules, such as proteins, resulting in the loss of function and/or aggregation. The accumulation of Cu,Zn-superoxide dismutase (SOD1) aggregates has been associated with familial cases of amyotrophic lateral sclerosis (ALS). The protein aggregation mechanisms in motor neurons remain unclear, although recent studies have shown that lipids and oxidized lipid derivatives may play roles in this process. Here, we aimed to compare the effects of different lipid aldehydes on the induction of SOD1 modifications and aggregation, in vitro. Human recombinant apo-SOD1 was incubated with 4-hydroxy-2-hexenal (HHE), 4-hydroxy-2-nonenal (HNE), 2-hexen-1-al (HEX), 2,4-nonadienal (NON), 2,4-decadienal (DEC), or secosterol aldehydes (SECO-A or SECO-B). High-molecular-weight apo-SOD1 aggregates dramatically increased in the presence of highly hydrophobic aldehydes (LogPcalc > 3). Notably, several Lys residues were modified by exposure to all aldehydes. The observed modifications were primarily observed on Lys residues located near the dimer interface (K3 and K9) and at the electrostatic loop (K122, K128, and K136). Moreover, HHE and HNE induced extensive apo-SOD1 modifications, by forming Schiff bases or Michael adducts with Lys, His, and Cys residues. However, these aldehydes were unable to induce large protein aggregates. Overall, our data shed light on the importance of lipid aldehyde hydrophobicity on the induction of apo-SOD1 aggregation and identified preferential sites of lipid aldehyde-induced modifications.


Assuntos
Esclerose Lateral Amiotrófica , Superóxido Dismutase , Aldeídos , Esclerose Lateral Amiotrófica/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipídeos , Mutação , Superóxido Dismutase/genética , Superóxido Dismutase-1/genética
12.
J Proteome Res ; 19(1): 248-259, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31697504

RESUMO

High-density lipoprotein (HDL) is a diverse group of particles with multiple cardioprotective functions. HDL proteome follows HDL particle complexity. Many proteins were described in HDL, but consistent quantification of HDL protein cargo is still a challenge. To address this issue, the aim of this work was to compare data-independent acquisition (DIA) and parallel reaction monitoring (PRM) methodologies in their abilities to differentiate HDL subclasses through their proteomes. To this end, we first evaluated the analytical performances of DIA and PRM using labeled peptides in pooled digested HDL as a biological matrix. Next, we compared the quantification capabilities of the two methodologies for 24 proteins found in HDL2 and HDL3 from 19 apparently healthy subjects. DIA and PRM exhibited comparable linearity, accuracy, and precision. Moreover, both methodologies worked equally well, differentiating HDL subclasses' proteomes with high precision. Our findings may help to understand HDL functional diversity.


Assuntos
Lipoproteínas HDL/sangue , Proteômica/métodos , Adulto , Idoso , Calibragem , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Limite de Detecção , Lipoproteínas HDL2/sangue , Lipoproteínas HDL3/sangue , Pessoa de Meia-Idade , Proteômica/estatística & dados numéricos , Controle de Qualidade , Espectrometria de Massas em Tandem/métodos , Fluxo de Trabalho , Adulto Jovem
13.
Chem Rev ; 119(3): 2043-2086, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30721030

RESUMO

Singlet oxygen (1O2) is a biologically relevant reactive oxygen species capable of efficiently reacting with cellular constituents. The resulting oxidatively generated damage to nucleic acids, membrane unsaturated lipids, and protein components has been shown to be implicated in several diseases, including arthritis, cataracts, and skin cancer. Singlet oxygen may be endogenously produced, among various possibilities, by myeloperoxidase, an enzyme implicated in inflammation processes, and also efficiently in skin by the UVA component of solar radiation through photosensitization reactions. Emphasis is placed in this Review on the description of the main oxidation reactions initiated by 1O2 and the resulting modifications within key cellular targets, including guanine for nucleic acids, unsaturated lipids, and targeted amino acids. Most of these reactions give rise to peroxides and dioxetanes, whose formation has been rationalized in terms of [4+2] cycloaddition and 1,2-cycloaddition with dienes + olefins, respectively. The use of [18O]-labeled thermolabile endoperoxides as a source of [18O]-labeled 1O2 has been applied to study mechanistic aspects and preferential targets of 1O2 in biological systems. A relevant major topic deals with the search for the molecular signature of the 1O2 formation in targeted biomolecules within cells. It may be anticipated that [18O]-labeled 1O2 and labeled peroxides in association with sensitive mass spectrometric methods should constitute powerful tools for this purpose.


Assuntos
Lipídeos/química , Ácidos Nucleicos/química , Proteínas/química , Oxigênio Singlete/química , Animais , Humanos , Metabolismo dos Lipídeos , Ácidos Nucleicos/metabolismo , Proteínas/metabolismo , Oxigênio Singlete/metabolismo
14.
Chem Res Toxicol ; 31(5): 332-339, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29707942

RESUMO

Air pollution is a major environmental risk for human health. Acetaldehyde is present in tobacco smoke and vehicle exhaust. In this study, we show that [13C2]-acetaldehyde induces DNA modification with the formation of isotopically labeled 1, N2-propano-2'-deoxyguanosine adducts in the brain and lungs of rats exposed to concentrations of acetaldehyde found in the atmosphere of megacities. The adduct, with the addition of two molecules of isotopically labeled acetaldehyde [13C4]-1, N2-propano-dGuo, was detected in the lung and brain tissues of exposed rats by micro-HPLC/MS/MS. Structural confirmation of the products was unequivocally performed by nano-LC/ESI+-HRMS3 analyses. DNA modifications induced by acetaldehyde have been regarded as a key factor in the mechanism of mutagenesis and may be involved in the cancer risks associated with air pollution.


Assuntos
Acetaldeído/toxicidade , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Adutos de DNA/biossíntese , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Acetaldeído/administração & dosagem , Acetaldeído/química , Animais , Isótopos de Carbono , Adutos de DNA/química , Adutos de DNA/isolamento & purificação , Masculino , Estrutura Molecular , Ratos , Ratos Wistar
15.
JCI Insight ; 2(15)2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28768900

RESUMO

Using genetic and biochemical approaches, we investigated proteins that regulate macrophage cholesterol efflux capacity (CEC) and ABCA1-specific CEC (ABCA1 CEC), 2 functional assays that predict cardiovascular disease (CVD). Macrophage CEC and the concentration of HDL particles were markedly reduced in mice deficient in apolipoprotein A-I (APOA1) or apolipoprotein E (APOE) but not apolipoprotein A-IV (APOA4). ABCA1 CEC was markedly reduced in APOA1-deficient mice but was barely affected in mice deficient in APOE or APOA4. High-resolution size-exclusion chromatography of plasma produced 2 major peaks of ABCA1 CEC activity. The early-eluting peak, which coeluted with HDL, was markedly reduced in APOA1- or APOE-deficient mice. The late-eluting peak was modestly reduced in APOA1-deficient mice but little affected in APOE- or APOA4-deficient mice. Ion-exchange chromatography and shotgun proteomics suggested that plasminogen (PLG) accounted for a substantial fraction of the ABCA1 CEC activity in the peak not associated with HDL. Human PLG promoted cholesterol efflux by the ABCA1 pathway, and PLG-dependent efflux was inhibited by lipoprotein(a) [Lp(a)]. Our observations identify APOA1, APOE, and PLG as key determinants of CEC. Because PLG and Lp(a) associate with human CVD risk, interplay among the proteins might affect atherosclerosis by regulating cholesterol efflux from macrophages.

16.
Curr Opin Lipidol ; 28(5): 414-418, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28777110

RESUMO

PURPOSE OF REVIEW: Epidemiological and clinical studies link low levels of HDL cholesterol (HDL-C) with increased risk of atherosclerotic cardiovascular disease (CVD). However, genetic polymorphisms linked to HDL-C do not associate consistently with CVD risk, and randomized clinical studies of drugs that elevate HDL-C via different mechanisms failed to reduce CVD risk in statin-treated patients with established CVD. New metrics that capture HDL's proposed cardioprotective effects are therefore urgently needed. RECENT FINDINGS: Recent studies demonstrate cholesterol efflux capacity (CEC) of serum HDL (serum depleted of cholesterol-rich atherogenic lipoproteins) is an independent and better predictor of incident and prevalent CVD risk than HDL-C. However, it remains unclear whether therapies that increase CEC are cardioprotective. Other key issues are the impact of HDL-targeted therapies on HDL particle size and concentration and the relationship of those changes to CEC and cardioprotection. SUMMARY: It is time to end the clinical focus on HDL-C and to understand how HDL's function, protein composition and size contribute to CVD risk. It will also be important to link variations in function and size to HDL-targeted therapies. Developing new metrics for quantifying HDL function, based on better understanding HDL metabolism and macrophage CEC, is critical for achieving these goals.


Assuntos
HDL-Colesterol/metabolismo , Animais , Biomarcadores/metabolismo , Humanos
17.
Curr Opin Lipidol ; 28(1): 52-59, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27906712

RESUMO

PURPOSE OF REVIEW: The ability of HDL to promote cholesterol efflux from macrophages is a predictor of cardiovascular risk independent of HDL cholesterol levels. However, the molecular determinants of HDL cholesterol efflux capacity (CEC) are largely unknown. RECENT FINDINGS: The term HDL defines a heterogeneous population of particles with distinct size, shape, protein, and lipid composition. Cholesterol efflux is mediated by multiple pathways that may be differentially modulated by HDL composition. Furthermore, different subpopulations of HDL particles mediate CEC via specific pathways, but the molecular determinants of CEC, either proteins or lipids, are unclear. Inflammation promotes a profound remodeling of HDL and impairs overall HDL CEC while improving ATP-binding cassette transporter G1-mediated efflux. This review discusses recent findings that connect HDL composition and CEC. SUMMARY: Data from recent animal and human studies clearly show that multiple factors associate with CEC including individual proteins, lipid composition, as well as specific particle subpopulations. Although acute inflammation remodels HDL and impairs CEC, chronic inflammation has more subtle effects. Standardization of assays measuring HDL composition and CEC is a necessary prerequisite for understanding the factors controlling HDL CEC. Unraveling these factors may help the development of new therapeutic interventions improving HDL function.


Assuntos
HDL-Colesterol/metabolismo , Inflamação/metabolismo , Animais , Transporte Biológico , Humanos
18.
J Clin Endocrinol Metab ; 101(9): 3419-28, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27399353

RESUMO

CONTEXT: Growing evidence challenges the concept that high-density lipoprotein-cholesterol (HDL-C) is cardioprotective after menopause. HDL particle concentration (HDL-P) and cholesterol efflux capacity (CEC) might be better predictors of cardiovascular risk. OBJECTIVE: Quantify alterations in HDL-P and CEC during menopause, correlating those changes with alterations in estradiol (E2) and FSH. DESIGN: Longitudinal study of HDL metrics before and after menopause as indexed by the final menstrual period (FMP). PARTICIPANTS: Forty-six women, mean baseline age 47.1 years, 33% black, 67% white. MAIN OUTCOMES AND MEASURES: HDL-P concentration (HDL-PIMA) by calibrated ion mobility analysis (IMA); macrophage CEC with cAMP-stimulated macrophages; ATP-binding cassette transporter A1 (ABCA1)-specific CEC with BHK cells expressing human ABCA1. RESULTS: After a median of 2.1 years since FMP, both HDL-C (P = .03) and HDL-PIMA (P = .01) increased, with a selective increase in large HDL-PIMA (P = .01), whereas sizes of medium and small HDL-PIMA were decreased (P < .05). These changes were independent of race, body mass index, and time difference. Macrophage CEC and ABCA1-specific CEC increased after FMP (both P < .001). Greater declines in E2 correlated with larger increases in small HDL-PIMA (P = .01), whereas greater increases in FSH associated with greater reductions in the size of medium HDL-PIMA (P = .04). Macrophage CEC and ABCA1-specific CEC correlated positively with E2 levels only before menopause (P = .04 and .009, respectively). CONCLUSIONS: Large HDL-PIMA and CEC increased significantly in the early phase of the menopausal transition. Whether patterns of these alterations differ in late postmenopause is unknown. Further exploration is needed to assess that and to determine whether the reported changes in HDL metrics associate with increased cardiovascular risk after menopause.


Assuntos
Doenças Cardiovasculares/fisiopatologia , HDL-Colesterol/sangue , Colesterol/sangue , Transportador 1 de Cassete de Ligação de ATP/sangue , Adulto , Biomarcadores/metabolismo , Células Cultivadas , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Macrófagos/citologia , Macrófagos/metabolismo , Menopausa , Pessoa de Meia-Idade , Prognóstico , Fatores de Risco , Saúde da Mulher
19.
Circ Res ; 119(1): 83-90, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27114438

RESUMO

RATIONALE: Coronary endothelial dysfunction (ED)-an early marker of atherosclerosis-increases the risk of cardiovascular events. OBJECTIVE: We tested the hypothesis that cholesterol efflux capacity and high-density lipoprotein (HDL) particle concentration predict coronary ED better than HDL-cholesterol (HDL-C). METHODS AND RESULTS: We studied 80 subjects with nonobstructive (<30% stenosis) coronary artery disease. ED was defined as <50% change in coronary blood flow in response to intracoronary infusions of acetylcholine during diagnostic coronary angiography. Cholesterol efflux capacity and HDL particle concentration (HDL-PIMA) were assessed with validated assays. Cholesterol efflux capacity and HDL-PIMA were both strong, inverse predictors of ED (P<0.001 and 0.005, respectively). In contrast, HDL-C and other traditional lipid risk factors did not differ significantly between control and ED subjects. Large HDL particles were markedly decreased in ED subjects (33%; P=0.005). After correction for HDL-C, both efflux capacity and HDL-PIMA remained significant predictors of ED status. HDL-PIMA explained cholesterol efflux capacity more effectively than HDL-C (r=0.54 and 0.36, respectively). The efflux capacities of isolated HDL and serum HDL correlated strongly (r=0.49). CONCLUSIONS: Cholesterol efflux capacity and HDL-PIMA are reduced in subjects with coronary ED, independently of HDL-C. Alterations in HDL-PIMA and HDL itself account for a much larger fraction of the variation in cholesterol efflux capacity than does HDL-C. A selective decrease in large HDL particles may contribute to impaired cholesterol efflux capacity in ED subjects. These observations support a role for HDL size, concentration, and function as markers-and perhaps mediators-of coronary atherosclerosis in humans.


Assuntos
HDL-Colesterol/metabolismo , Doença da Artéria Coronariana/sangue , Endotélio Vascular/metabolismo , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , HDL-Colesterol/sangue , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Endotélio Vascular/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
Arch Biochem Biophys ; 595: 161-75, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27095234

RESUMO

Inspired by Helmut Sies we continue the development of suitable chemical generators of (1)O2 based on the thermodissociation of naphthalene endoperoxide derivatives. The present manuscript focuses on how the use of [(18)O]-labeled endoperoxides and hydroperoxides can be applied to study mechanistic aspects related to the generation of singlet molecular oxygen and its reactions in biological systems. The peroxidation reactions of the main cellular targets including unsaturated lipids, proteins and nucleic acids have received major attention during the last three decades. Emphasis is placed in this manuscript on the description of the synthesis and the main use of [(18)O]-labeled compounds, and especially of peroxides and (1)O2, for tracer elucidation of reaction mechanisms.


Assuntos
Peróxidos/química , Oxigênio Singlete , Brasil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...