Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Langmuir ; 36(37): 11034-11043, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32885979

RESUMO

Using electrical signals to guide materials' deposition has a long-standing history in metal coating, microchip fabrication, and the integration of organics with devices. In electrodeposition, however, the conductive materials can be deposited only onto the electrode surfaces. Here, an innovative process is presented to electrofabricate freestanding biopolymer membranes at the interface of electrolytes without any supporting electrodes at the fabrication site. Chitosan, a derivative from the naturally abundant biopolymer chitin, has been broadly explored in electrodeposition for integrating biological entities onto microfabricated devices. It is widely believed that the pH gradients generated at the cathode deprotonate the positively charged chitosan chains into a film on the cathode surface. The interfacial electrofabrication with pH indicators, however, demonstrated that the membrane growth was driven by the instantaneous flow of hydroxyl ions from the ambient alginate solution, rather than the slow propagation of pH gradients from the cathode surface. This interfacial electrofabrication produces freestanding membrane structures and can be expanded to other materials, which presents a new direction in using electrical signals for manufacturing.


Assuntos
Quitosana , Alginatos , Eletrodos , Galvanoplastia , Membranas Artificiais
2.
Biomicrofluidics ; 12(5): 054106, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30310527

RESUMO

The human oral mucosa hosts a diverse microbiome and is exposed to potentially toxic biomaterials from dental restoratives. Mucosal health is partly determined by cell and tissue responses to challenges such as dental materials and pathogenic bacteria. An in vitro model to rapidly determine potential layer-specific responses would lead to a better understanding of mucosal homeostasis and pathology. Therefore, this study aimed to develop a co-cultured microfluidic mucosal model on-a-chip to rapidly assess mucosal remodeling and the responses of epithelial and subepithelial layers to challenges typically found in the oral environment. A gingival fibroblast-laden collagen hydrogel was assembled in the central channel of a three-channel microfluidic chamber with interconnecting pores, followed by a keratinocyte layer attached to the collagen exposed in the pores. This configuration produced apical and subepithelial side channels capable of sustaining flow. Keratinocyte, fibroblast, and collagen densities were optimized to create a co-culture tissue-like construct stable over one week. Cells were stained and imaged with epifluorescence microscopy to confirm layer characteristics. As proof-of-concept, the mucosal construct was exposed separately to a dental monomer, 2-hydroxylethyl methacrylate (HEMA), and the oral bacteria Streptococcus mutans. Exposure to HEMA lowered mucosal cell viability, while exposure to the bacteria lowered trans-epithelial electrical resistance. These findings suggest that the oral mucosa-on-a-chip is useful for studying oral mucosal interactions with bacteria and biomaterials with a histology-like view of the tissue layers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...