Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028844

RESUMO

We genotyped a population of 618 diploid potato clones derived from six independent potato-breeding programmes from NW-Europe. The diploids were phenotyped for 23 traits, using standardised protocols and common check varieties, enabling us to derive whole population estimators for most traits. We subsequently performed a Genome-Wide Association Study (GWAS) to identify quantitative trait loci (QTL) for all traits with SNPs and short-read haplotypes derived from read-backed phasing. In this study, we used a marker platform called PotatoMASH (Potato Multi-Allele Scanning Haplotags); a pooled multiplex amplicon sequencing based approach. Through this method, neighbouring SNPs within an amplicon can be combined to generate multi-allelic short-read haplotypes (haplotags) that capture recombination history between the constituent SNPs, and reflect the allelic diversity of a given locus in a different way than single bi-allelic SNPs. We found a total of 37 unique QTL across both marker types. A core of 10 QTL were detected with SNPs as well as with haplotags. Haplotags allowed to detect an additional 14 QTL not found based on the SNP set. Conversely, the bi-allelic SNP set also found 13 QTL not detectable using the haplotag set. We conclude that both marker types should routinely be used in parallel to maximize the QTL detection power. We report 19 novel QTL for nine traits: Skin Smoothness, Sprout Dormancy, Total Tuber Number, Tuber Length, Yield, Chipping Colour, After-cooking Blackening, Cooking Type and Eye depth.

2.
Theor Appl Genet ; 112(2): 269-77, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16261329

RESUMO

A marker-saturated linkage map of potato was used to genetically map a locus involved in the resistance against wart disease Synchytrium endobioticum race 1. The locus mapped on the long arm of chromosome 4 and is named Sen1-4 in contrast to a Sen1 locus on chromosome 11. The AFLP markers from the Sen1-4 interval enabled the isolation of BAC clones from an 11 genome equivalent BAC library. This was achieved via fingerprinting of BAC pools with the AFLP primer pairs that resemble the genetic marker loci. With non-selective AFLP primers, fingerprints of individual BAC clones were generated to analyse the overlap between BAC clones using FPC. This resulted in a complete contig and a minimal tiling path of 14 BAC clones enclosing the Sen1-4 locus. The BAC contig has a genetic length of approximately 6 cM and a physical length of approximately 1 Mb. Our results demonstrate that map-based cloning of Sen1-4 can be pursued on the basis of a strategy of marker saturation alone. Genetic resolution achieved by screening large numbers of offspring for recombination events may not be required. Together with the construction of the BAC contig, a physical map with the position of the markers is accomplished in one step. This provides proof of concept for the utility of the marker saturation that is offered by the ultra dense AFLP map of potato for gene cloning.


Assuntos
Mapeamento Cromossômico/métodos , Genes de Plantas/genética , Imunidade Inata/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Solanum tuberosum/genética , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas/genética , Mapeamento de Sequências Contíguas , Marcadores Genéticos/genética , Polimorfismo Genético/genética , Solanum tuberosum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...