Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(46): 43664-43673, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38027380

RESUMO

Biomass conversions to chemicals via various conventional technologies require high energy consumption, high temperature, high pressure, or high system cost. Alternatively, photocatalysis is one of the greener technologies because it utilizes the energy from lamps or natural sunlight with catalysts to synthesize chemicals under mild conditions and room temperature. In this work, zinc oxide (ZnO) particles were successfully synthesized using polyvinylpyrrolidone as an additive in coprecipitation to control the size and protect the aggregation. The crystal structure of hexagonal wurtzite was found in the obtained nanoparticles. The photocatalytic activities of the obtained samples were evaluated for the production of high-value chemicals (gluconic acid, xylitol, arabinose, and formic acid) via the photocatalytic conversion of glucose under UV-A irradiation. The photocatalytic results indicated the relationship of defects (i.e., oxygen vacancies and zinc vacancies) with glucose conversions. From the ZnO nanoparticles calcined at various temperatures from 400 to 700 °C, the one calcined at 700 °C showed the highest glucose conversion of 21.5% with a high yield of carboxylic acid products (gluconic acid and formic acid). The gluconic acid showed the highest yield of 15% for 180 min, while the formic acid, arabinose, and xylitol presented the highest yields of 7, 1, and 0.5% for 180 min, respectively. Pure ZnO nanoparticles can convert glucose into value-added products without adding an acid or base in the reaction.

2.
ACS Omega ; 5(11): 5862-5872, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32226866

RESUMO

TiO2 nanofibers were fabricated by combination of sol-gel and electrospinning techniques. Ag-doped TiO2 nanofibers with different Ag contents were prepared by two different methods (in situ electrospinning or wetness impregnation of Ag on TiO2 nanofibers) and heat treated at 500 °C for 2 h under an air or N2 atmosphere. The obtained catalysts were characterized by field emission scanning electron microscopy, X-ray diffraction, photoluminescence, and N2 adsorption analyzed by the Brunauer-Emmett-Teller (BET) method. Photocatalytic glucose conversions with electrospun TiO2 and Ag-doped TiO2 nanofibers for production of high-value products were carried out. From different doping methods, the results indicated that 1 wt % Ag-TiO2 nanofibers prepared by an in situ method with calcination under N2 achieved the highest glucose conversion (85.49%). From several Ag loading contents (i.e., 0, 1, 2, and 4 wt %) in Ag-doped TiO2 nanofibers, the nanofibers exhibited different glucose conversions [in order of 2 wt % (99.65%) > 1 wt % (85.49%) > 4 wt % (77.72%) > 0 wt % (29.64%)]. Arabinose, xylitol, gluconic acid, and formic acid were found as the high-value chemicals with the photocatalytic reaction of TiO2 and Ag-doped TiO2 nanofibers under UVA irradiation. Product yields of each converted chemicals from different photocatalysts from different Ag loading contents showed relatively same trends with the glucose conversion. From all results, it can be concluded that the good characteristics of 2 wt % Ag-TiO2 nanofibers such as the smallest anatase crystallite size (8.25 nm) and the highest specific surface area (S BET = 53.69 m2/g) promoted the highest photocatalytic activity. Additionally, TiO2 and Ag-doped TiO2 nanofibers exhibited higher photocatalytic performance for glucose conversion than commercial TiO2 (P25) and synthesized TiO2 nanoparticles. Finally, Ag-doped TiO2 nanofibers showed recycling ability with high photocatalytic glucose conversion after four-time use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...