Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
3 Biotech ; 9(10): 376, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31588400

RESUMO

Our earlier studies have indicated that GA3, being a growth hormone, increases internodal length, in turn increasing sink strength and improving sucrose accumulation in sugarcane. In this study, transcriptomic level analysis was carried out on internodal samples of a high sugar accumulating variety (CoLk 94184) of sugarcane, to determine the effect of exogenous application of GA3 vis a vis functional analysis of differentially expressing transcripts. Overall, a total of 201,184 transcripts were identified, with median contig length of 450 bp and N50 length of 1029 bp. Analyzing the data from control and GA3-treated canes, at 0.01 significance, a total of 1516 differentially expressing transcripts were identified in bottom internodes and 1589 in top internodes. A KEGG (enrichment) analysis grouped the transcripts into 153 plant-related functional categories. From among these, the transcripts which were functionally relevant to sugar metabolism and photosynthesis were sieved out. Starch and sucrose metabolizing genes showed maximum fold change of 5.0 and 3.0 among top and bottom internodal samples. A homology match using Blastx analysis tool yielded 65 transcripts/differentially expressed genes (DEGs) which were found to share homology with C4 plants like Saccharum, Sorghum and Zea mays. Differentially expressing transcripts from both top and bottom internodes were validated by qRT-PCR, indicating their importance in such study. Results also enriched sugarcane transcriptome resources useful for omics study in genus Saccharum and family Poaceae.

2.
Physiol Mol Biol Plants ; 25(1): 207-220, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30804643

RESUMO

Sucrose synthesis/accumulation in sugarcane depends on the source-sink communication wherein source responds to sink demand for photoassimilate supply. Sucrose in stalk (sink) acts as signal, and sends feedback to restrain further synthesis of sucrose by regulating photosynthetic efficiency of leaves (source). Hence sucrose synthesis/accumulation is controlled by many genes and regulatory sequences including 3 invertases (SAI, CWI, NI), sucrose synthase (SuSy) and sucrose phosphate synthase (SPS). SPS and invertase play key role in enhancing sink strength which ultimately promotes greater sucrose accumulation in the sink tissues. In present study, a significant positive correlation was found between sucrose% of source and sink tissues which was greater in the top (R 2 = 0.679) than middle (R 2 = 0.580) and bottom (R 2 = 0.518) internodes, depicting that sucrose accumulation in the stalk bears a direct relation with sucrose translocation efficiency from source. Results indicated an increased sucrose% with maturity, while reducing sugar content decreased with crop growth. qRT-PCR results exhibited an elevated expression of invertase in immature sink tissues depicting increased sink requirement, which declined with maturity. Similarly, increased PEP carboxylase gene expression as observed supported the fact that higher sink demand results in enhanced photosynthetic rate and thus influences the source activity. SPS was found active at initial stage of cane development indicating its role in sucrose synthesis. Thus by studying expression patterns of the different genes both, in source and sink tissues, a better understanding of the sucrose accumulation pathway in sugarcane is possible, which in turn can help in elucidating ways to enhance sucrose concentration in sink.

3.
3 Biotech ; 8(10): 418, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30237965

RESUMO

Constant removal of sugars from the site of synthesis (i.e., leaves), in response to elevated sink (culm) demand, may perhaps prevent damping of photosynthesis, by sugar, and hence promote further sucrose accumulation in the culm. In this study, gibberellic acid (GA3) induced nearly 42.3% enlargement in cell size and about 39.3% increase in internodal length (sink capacity), 177% escalation in reducing sugar level (sink strength), amplified the expression of sucrose-metabolizing enzymes (sink demand), viz., 7.5-fold for SAI, 4.5-fold for CWI, sixfold for SPS, all demonstrating facilitation of augmented sucrose accumulation in the culm. The GA3-treated BO 91 cane (late maturing sugarcane variety) exhibited an elevated final sucrose concentration (40.54-41.6%) as compared to control (30.44-38.8%). The GA3-sprayed cane of early maturing Co J64 also showed such a boost, but it was lost by the end of maturity, perhaps due to inversion and/or the less effective GA3 treatment. Thus, results demonstrated the role of GA3 in augmenting sucrose content of cane culm, possibly by influencing source-sink dynamics in sugarcane.

4.
Plant Biol (Stuttg) ; 17(3): 608-17, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25311688

RESUMO

Sucrose synthesis/accumulation in sugarcane is a complex process involving many genes and regulatory sequences that control biochemical events in source-sink tissues. Among these, sucrose synthase (SuSy), sucrose phosphate synthase (SPS), soluble acid (SAI) and cell wall (CWI) invertases are important. Expression of these enzymes was compared in an early (CoJ64) and late (BO91) maturing sugarcane variety using end-point and qRT-PCR. Quantitative RT-PCR at four crop stages revealed high CWI expression in upper internodes of CoJ64, which declined significantly in both top and bottom internodes with maturity. In BO91, CWI expression was high in top and bottom internodes and declined significantly only in top internodes as the crop matured. Overall, CWI expression was higher in CoJ64 than in BO91. During crop growth, there was no significant change in SPS expression in bottom internodes in CoJ64, whereas in BO91 it decreased significantly. Apart from a significant decrease in expression of SuSy in mature bottom internodes of BO91, there was no significant change. Similar SAI expression was observed with both end-point and RT-PCR, except for significantly increased expression in top internodes of CoJ64 with maturity. SAI, being a major sucrose hydrolysing enzyme, was also monitored with end-point PCR expression in internode tissues of CoJ64 and BO91, with higher expression of SAI in BO91 at early crop stages. Enzyme inhibitors, e.g. manganese chloride (Mn(++) ), significantly suppressed expression of SAI in both early- and late-maturing varieties. Present findings enhance understanding of critical sucrose metabolic gene expression in sugarcane varieties differing in content and time of peak sucrose storage. Thus, through employing these genes, improvement of sugarcane sucrose content is possible.


Assuntos
Expressão Gênica , Genes de Plantas , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Caules de Planta/metabolismo , Saccharum/genética , Sacarose/metabolismo , Parede Celular/metabolismo , Produtos Agrícolas , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Hibridização Genética , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharum/enzimologia , Saccharum/crescimento & desenvolvimento , Saccharum/metabolismo , Especificidade da Espécie , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...