Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 125(48): 13235-13245, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34812631

RESUMO

Research on materials facilitating efficient singlet fission (SF) is driven by a possible reduction of thermalization losses in organic photovoltaic devices. Intramolecular SF (iSF) is in this context of special interest, as the targeted modification of either chromophores or linkers enables gradual variations of molecular properties. In this combined synthetic, spectroscopic, and computational work, we present and investigate nine novel spiro-linked azaarene dimers, which undergo efficient iSF with triplet yields up to 199%. Additional molecular braces enhance the rigidity of these tailor-made dimers (TMDs), resulting in great agreement between crystal structures and predicted optimal geometries for iSF in solution. Regardless of the employed chromophores and linkages, the dynamics of all nine TMDs are perfectly described by a unified kinetic model. Most notably, an increase in the orbital overlap of the π-systems by decreasing the twist angle between the two chromophores does not only increase the rate of formation of the correlated triplet pair but also further promotes its decorrelation. This new structure-function relationship represents a promising strategy toward TMDs with high triplet lifetimes to be utilized in optoelectronic devices.

2.
J Phys Chem B ; 124(41): 9163-9174, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32965116

RESUMO

Singlet fission (SF) has the potential to boost solar energy conversion. Research has focused on designing new strategies to tune the electrochemistry, photophysics, and device architecture at the molecular level to improve the efficiency of SF sensitizers. These studies indicate that SF efficiency strongly depends on morphology, packing, and chemical structure. In this work, we use time-resolved spectroscopy to study intramolecular SF in three covalently linked azaarene dimers. Their rigid structure makes them promising model systems to investigate the effect of chemical modification on intramolecular SF without any potential contributions from geometrical factors. Our experimental results along with theoretical calculations show that SF occurs in all three dimers, confirming SF in perpendicularly oriented chromophores with negligible overlapping π-systems. Additionally, a complex branching mechanism is discovered for the evolution of the singlet (S0S1) and the correlated triplet pair 1(T1T1) states. Although chemical modification has only a minor effect on SF rate and generation of the correlated triplet pair, it plays a critical role in the evolution toward the formation of free triplets. Finally, comparison of deaerated and aerated solutions underpins the effect of oxygen in altering the 1(T1T1) dynamics by opening new decay pathways.

3.
J Phys Chem B ; 121(18): 4810-4816, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28430436

RESUMO

Here we reveal details of the interaction between human lysozyme proteins, both native and fibrils, and their water environment by intense terahertz time domain spectroscopy. With the aid of a rigorous dielectric model, we determine the amplitude and phase of the oscillating dipole induced by the THz field in the volume containing the protein and its hydration water. At low concentrations, the amplitude of this induced dipolar response decreases with increasing concentration. Beyond a certain threshold, marking the onset of the interactions between the extended hydration shells, the amplitude remains fixed but the phase of the induced dipolar response, which is initially in phase with the applied THz field, begins to change. The changes observed in the THz response reveal protein-protein interactions mediated by extended hydration layers, which may control fibril formation and may have an important role in chemical recognition phenomena.


Assuntos
Muramidase/química , Água/química , Humanos , Muramidase/metabolismo , Soluções , Espectroscopia Terahertz , Fatores de Tempo
4.
J Phys Chem Lett ; 6(22): 4573-80, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26528956

RESUMO

Until recently it was believed that photosynthesis, a fundamental process for life on earth, could be fully understood with semiclassical models. However, puzzling quantum phenomena have been observed in several photosynthetic pigment-protein complexes, prompting questions regarding the nature and role of these effects. Recent attention has focused on discrete vibrational modes that are resonant or quasi-resonant with excitonic energy splittings and strongly coupled to these excitonic states. Here we unambiguously identify excited state coherent superpositions in photosynthetic light-harvesting complexes using a new experimental approach. Decoherence on the time scale of the excited state lifetime allows low energy (56 cm(-1)) oscillations on the signal intensity to be observed. In conjunction with an appropriate model, these oscillations provide clear and direct experimental evidence that the persistent coherences observed originate from quantum superpositions among vibronic excited states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...