Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37629161

RESUMO

Autophagy is a tightly regulated catabolic process involved in the degradation and recycling of proteins and organelles. Ubiquitination plays an important role in the regulation of autophagy. Vacuole Membrane Protein 1 (VMP1) is an essential autophagy protein. The expression of VMP1 in pancreatic cancer stem cells carrying the activated Kirsten rat sarcoma viral oncogene homolog (KRAS) triggers autophagy and enables therapy resistance. Using biochemical and cellular approaches, we identified ubiquitination as a post-translational modification of VMP1 from the initial steps in autophagosome biogenesis. VMP1 remains ubiquitinated as part of the autophagosome membrane throughout autophagic flux until autolysosome formation. However, VMP1 is not degraded by autophagy, nor by the ubiquitin-proteasomal system. Mass spectrometry and immunoprecipitation showed that the cell division cycle protein cdt2 (Cdt2), the substrate recognition subunit of the E3 ligase complex associated with cancer, cullin-RING ubiquitin ligase complex 4 (CRL4), is a novel interactor of VMP1 and is involved in VMP1 ubiquitination. VMP1 ubiquitination decreases under the CRL inhibitor MLN4924 and increases with Cdt2 overexpression. Moreover, VMP1 recruitment and autophagosome formation is significantly affected by CRL inhibition. Our results indicate that ubiquitination is a novel post-translational modification of VMP1 during autophagy in human tumor cells. VMP1 ubiquitination may be of clinical relevance in tumor-cell-therapy resistance.


Assuntos
Proteínas de Membrana , Neoplasias , Processamento de Proteína Pós-Traducional , Humanos , Autofagia/genética , Macroautofagia , Proteínas de Membrana/metabolismo , Ubiquitina , Ubiquitinação
2.
Front Cell Dev Biol ; 9: 640094, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816487

RESUMO

Mitophagy and zymophagy are selective autophagy pathways early induced in acute pancreatitis that may explain the mild, auto limited, and more frequent clinical presentation of this disease. Adequate mitochondrial bioenergetics is necessary for cellular restoration mechanisms that are triggered during the mild disease. However, mitochondria and zymogen contents are direct targets of damage in acute pancreatitis. Cellular survival depends on the recovering possibility of mitochondrial function and efficient clearance of damaged mitochondria. This work aimed to analyze mitochondrial dynamics and function during selective autophagy in pancreatic acinar cells during mild experimental pancreatitis in rats. Also, using a cell model under the hyperstimulation of the G-coupled receptor for CCK (CCK-R), we aimed to investigate the mechanisms involved in these processes in the context of zymophagy. We found that during acute pancreatitis, mitochondrial O2 consumption and ATP production significantly decreased early after induction of acute pancreatitis, with a consequent decrease in the ATP/O ratio. Mitochondrial dysfunction was accompanied by changes in mitochondrial dynamics evidenced by optic atrophy 1 (OPA-1) and dynamin-related protein 1 (DRP-1) differential expression and ultrastructural features of mitochondrial fission, mitochondrial elongation, and mitophagy during the acute phase of experimental mild pancreatitis in rats. Mitophagy was also evaluated by confocal assay after transfection with the pMITO-RFP-GFP plasmid that specifically labels autophagic degradation of mitochondria and the expression and redistribution of the ubiquitin ligase Parkin1. Moreover, we report for the first time that vacuole membrane protein-1 (VMP1) is involved and required in the mitophagy process during acute pancreatitis, observable not only by repositioning around specific mitochondrial populations, but also by detection of mitochondria in autophagosomes specifically isolated with anti-VMP1 antibodies as well. Also, VMP1 downregulation avoided mitochondrial degradation confirming that VMP1 expression is required for mitophagy during acute pancreatitis. In conclusion, we identified a novel DRP1-Parkin1-VMP1 selective autophagy pathway, which mediates the selective degradation of damaged mitochondria by mitophagy in acute pancreatitis. The understanding of the molecular mechanisms involved to restore mitochondrial function, such as mitochondrial dynamics and mitophagy, could be relevant in the development of novel therapeutic strategies in acute pancreatitis.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32655498

RESUMO

Autophagy is an evolutionarily preserved degradation process of cytoplasmic cellular constituents, which participates in cell response to disease. We previously characterized VMP1 (Vacuole Membrane Protein 1) as an essential autophagy related protein that mediates autophagy in pancreatic diseases. We also demonstrated that VMP1-mediated autophagy is induced by HIF-1A (hypoxia inducible factor 1 subunit alpha) in colon-cancer tumor cell lines, conferring resistance to photodynamic treatment. Here we identify a new molecular pathway, mediated by VMP1, by which gemcitabine is able to trigger autophagy in human pancreatic tumor cell lines. We demonstrated that gemcitabine requires the VMP1 expression to induce autophagy in the highly resistant pancreatic cancer cells PANC-1 and MIAPaCa-2 that carry activated KRAS. E2F1 is a transcription factor that is regulated by the retinoblastoma pathway. We found that E2F1 is an effector of gemcitabine-induced autophagy and regulates the expression and promoter activity of VMP1. Chromatin immunoprecipitation assays demonstrated that E2F1 binds to the VMP1 promoter in PANC-1 cells. We have also identified the histone acetyltransferase EP300 as a modulator of VMP1 promoter activity. Our data showed that the E2F1-EP300 activator/co-activator complex is part of the regulatory pathway controlling the expression and promoter activity of VMP1 triggered by gemcitabine in PANC-1 cells. Finally, we found that neither VMP1 nor E2F1 are induced by gemcitabine treatment in BxPC-3 cells, which do not carry oncogenic KRAS and are sensitive to chemotherapy. In conclusion, we have identified the E2F1-EP300-VMP1 pathway that mediates gemcitabine-induced autophagy in pancreatic cancer cells. These results strongly support that VMP1-mediated autophagy may integrate the complex network of events involved in pancreatic ductal adenocarcinoma chemo-resistance. Our experimental findings point at E2F1 and VMP1 as novel potential therapeutic targets in precise treatment strategies for pancreatic cancer.


Assuntos
Autofagia , Desoxicitidina/análogos & derivados , Proteína p300 Associada a E1A/metabolismo , Fator de Transcrição E2F1/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Desoxicitidina/farmacologia , Proteína p300 Associada a E1A/genética , Fator de Transcrição E2F1/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Membrana/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Células Tumorais Cultivadas , Gencitabina
4.
Methods Mol Biol ; 1880: 541-554, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30610721

RESUMO

Acute pancreatitis is one of the first pathological processes where autophagy has been described in a human tissue. Autophagy, autodigestion, and cell death are early cellular events in acute pancreatitis. Recent advances in understanding autophagy highlight its importance in pathological conditions. However, methods for monitoring autophagic activity during complex diseases, involving highly differentiated secretory cells, are complicated, and the results are sometimes misinterpreted. Here, we describe methods used to identify autophagic structures and to measure autophagic flux in cultured cell models and animal models of pancreatitis. We also briefly describe the pancreas specific autophagy mouse model that was useful to understand the actual role of autophagy in pancreatitis and to identify a novel selective autophagy pathway named zymophagy. Lastly, we describe the immunomagnetic isolation of autophagosomes and the detection of autophagy in pancreatic tissue samples derived from humans.


Assuntos
Autofagossomos/patologia , Autofagia , Precursores Enzimáticos/metabolismo , Pâncreas/patologia , Pancreatite/patologia , Células Acinares , Animais , Autofagossomos/ultraestrutura , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular , Ceruletídeo/toxicidade , Modelos Animais de Doenças , Humanos , Lisossomos/metabolismo , Masculino , Camundongos , Microscopia Eletrônica/instrumentação , Microscopia Eletrônica/métodos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Pâncreas/citologia , Pancreatectomia , Pancreatite/induzido quimicamente , Pancreatite/cirurgia , Ratos , Vesículas Secretórias/patologia
5.
PLoS One ; 13(5): e0197109, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29738548

RESUMO

Hepatitis B virus (HBV) genotypes and mutants have been associated with differences in clinical and virological characteristics. Autophagy is a cellular process that degrades long-lived proteins and damaged organelles. Viruses have evolved mechanisms to alter this process to survive in host cells. In this work, we studied the modulation of autophagy by the replication of HBV subgenotypes F1b and F4, and the naturally occurring mutants BCP and preCore. HBV subgenotypes F1b and F4 replication induced accumulation of autophagosomes in hepatoma cells. However, no autophagic protein degradation was observed, indicating a blockage of autophagic flux at later stages. This inhibition of autophagy flux might be due to an impairment of lysosomal acidification in hepatoma cells. Moreover, HBV-mediated autophagy modulation was independent of the viral subgenotypes and enhanced in viruses with BCP and preCore naturally occurring mutations. These results contribute to understand the mechanisms by which different HBV variants contribute to the pathogenesis of HBV infections. In addition, this study is the first to describe the role that two highly prevalent naturally occurring mutations exert on the modulation of HBV-induced autophagy.


Assuntos
Autofagia/genética , Genótipo , Vírus da Hepatite B/genética , DNA Viral/genética , Vírus da Hepatite B/patogenicidade , Hepatócitos/virologia , Humanos , Lisossomos/genética , Lisossomos/virologia , Mutação , Regiões Promotoras Genéticas/genética , Proteólise , Replicação Viral/genética
6.
Clin Sci (Lond) ; 131(8): 673-687, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28188238

RESUMO

The aim of the present study was to demonstrate the role of autophagy and incretins in the fructose-induced alteration of ß-cell mass and function. Normal Wistar rats were fed (3 weeks) with a commercial diet without (C) or with 10% fructose in drinking water (F) alone or plus sitagliptin (CS and FS) or exendin-4 (CE and FE). Serum levels of metabolic/endocrine parameters, ß-cell mass, morphology/ultrastructure and apoptosis, vacuole membrane protein 1 (VMP1) expression and glucose-stimulated insulin secretion (GSIS) were studied. Complementary to this, islets isolated from normal rats were cultured (3 days) without (C) or with F and F + exendin-4 or chloroquine. Expression of autophagy-related proteins [VMP1 and microtubule-associated protein light chain 3 (LC3)], apoptotic/antiapoptotic markers (caspase-3 and Bcl-2), GSIS and insulin mRNA levels were measured. F rats developed impaired glucose tolerance (IGT) and a significant increase in plasma triacylglycerols, thiobarbituric acid-reactive substances, insulin levels, homoeostasis model assessment (HOMA) for insulin resistance (HOMA-IR) and ß-cell function (HOMA-ß) indices. A significant reduction in ß-cell mass was associated with an increased apoptotic rate and morphological/ultrastructural changes indicative of autophagic activity. All these changes were prevented by either sitagliptin or exendin-4. In cultured islets, F significantly enhanced insulin mRNA and GSIS, decreased Bcl-2 mRNA levels and increased caspase-3 expression. Chloroquine reduced these changes, suggesting the participation of autophagy in this process. Indeed, F induced the increase of both VMP1 expression and LC3-II, suggesting that VMP1-related autophagy is activated in injured ß-cells. Exendin-4 prevented islet-cell damage and autophagy development. VMP1-related autophagy is a reactive process against F-induced islet dysfunction, being prevented by exendin-4 treatment. This knowledge could help in the use of autophagy as a potential target for preventing progression from IGT to type 2 diabetes mellitus.


Assuntos
Autofagia/efeitos dos fármacos , Dieta/efeitos adversos , Frutose/farmacologia , Incretinas/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Proteínas de Membrana/fisiologia , Animais , Autofagia/fisiologia , Peso Corporal , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Ingestão de Energia , Exenatida , Frutose/administração & dosagem , Intolerância à Glucose/etiologia , Intolerância à Glucose/patologia , Intolerância à Glucose/prevenção & controle , Teste de Tolerância a Glucose , Hipoglicemiantes/farmacologia , Insulina/biossíntese , Insulina/genética , Células Secretoras de Insulina/ultraestrutura , Masculino , Microscopia Eletrônica , Peptídeos/farmacologia , RNA Mensageiro/genética , Ratos Wistar , Fosfato de Sitagliptina/farmacologia , Peçonhas/farmacologia
7.
Biomed Res Int ; 2014: 926729, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25197670

RESUMO

Autophagy is a highly regulated-cell pathway for degrading long-lived proteins as well as for clearing cytoplasmic organelles. Autophagy is a key contributor to cellular homeostasis and metabolism. Warburg hypothesized that cancer growth is frequently associated with a deviation of a set of energy generation mechanisms to a nonoxidative breakdown of glucose. This cellular phenomenon seems to rely on a respiratory impairment, linked to mitochondrial dysfunction. This mitochondrial dysfunction results in a switch to anaerobic glycolysis. It has been recently suggested that epithelial cancer cells may induce the Warburg effect in neighboring stromal fibroblasts in which autophagy was activated. These series of observations drove to the proposal of a putative reverse Warburg effect of pathophysiological relevance for, at least, some tumor phenotypes. In this review we introduce the autophagy process and its regulation and its selective pathways and role in cancer cell metabolism. We define and describe the Warburg effect and the newly suggested "reverse" hypothesis. We also discuss the potential value of modulating autophagy with several pharmacological agents able to modify the Warburg effect. The association of the Warburg effect in cancer and stromal cells to tumor-related autophagy may be of relevance for further development of experimental therapeutics as well as for cancer prevention.


Assuntos
Autofagia , Glicólise , Neoplasias/metabolismo , Neoplasias/patologia , Humanos , Modelos Biológicos
8.
Autophagy ; 9(6): 933-5, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23558782

RESUMO

We have elucidated a novel mechanism through which the autophagy-specific class III phosphatidylinositol 3-kinase (PtdIns3K) complex can be recruited to the PAS in mammalian cells, through the interaction between BECN1 and the vacuole membrane protein 1 (VMP1), an integral autophagosomal membrane protein. This interaction involves the binding between the C-terminal 20 amino acids of the VMP1 hydrophilic domain, which we have named the VMP1 autophagy-related domain (VMP1-AtgD), and the BH3 domain of BECN1. The association between these two proteins allows the formation of the autophagy-specific PtdIns3K complex, which activity favors the generation of phosphatidylinositol-3-phosphate (PtdIns3P) and the subsequent association of the autophagy-related (ATG) proteins, including ATG16L1, with the phagophore membranes. Therefore, VMP1 regulates the PtdIns3K activity on the phagophore membrane through its interaction with BECN1. Our data provide a novel model describing one of the key steps in phagophore assembly site (PAS) formation and autophagy regulation, and positions VMP1 as a new interactor of the autophagy-specific PtdIns3K complex in mammalian cells.


Assuntos
Autofagia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Membrana/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Ativação Enzimática , Humanos , Modelos Biológicos , Ligação Proteica
9.
Sci Rep ; 3: 1055, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23316280

RESUMO

The Vacuole Membrane Protein 1 -VMP1- is a pancreatitis-associated transmembrane protein whose expression triggers autophagy in several human diseases. In the current study, we unveil the mechanism through which this protein induces autophagosome formation in mammalian cells. We show that VMP1 autophagy-related function requires its 20-aminoacid C-terminus hydrophilic domain (VMP1-AtgD). This is achieved through its direct binding to the BH3 motif of Beclin 1 leading to the formation of a complex with the Class III phosphatidylinositol-3 kinase (PI3K) hVps34, a key positive regulator of autophagy, at the site where autophagosomes are generated. This interaction also concomitantly promotes the dissociation of Bcl-2, an autophagy inhibitor, from Beclin 1. Moreover, we show that the VMP1-Beclin 1-hVps34 complex favors the association of Atg16L1 and LC3 with the autophagosomal membranes. Collectively, these findings reveal that VMP1 expression recruits and activates the Class III PI3K complex at the site of autophagosome formation during mammalian autophagy.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/fisiologia , Proteínas de Membrana/metabolismo , Animais , Proteínas Reguladoras de Apoptose/química , Proteína Beclina-1 , Linhagem Celular , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Humanos , Proteínas de Membrana/química , Camundongos , Complexos Multiproteicos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
10.
J Biol Chem ; 287(30): 25325-34, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22535956

RESUMO

Autophagy is an evolutionarily conserved degradation process of cytoplasmic cellular constituents. It has been suggested that autophagy plays a role in tumor promotion and progression downstream oncogenic pathways; however, the molecular mechanisms underlying this phenomenon have not been elucidated. Here, we provide both in vitro and in vivo evidence of a novel signaling pathway whereby the oncogene KRAS induces the expression of VMP1, a molecule needed for the formation of the authophagosome and capable of inducing autophagy, even under nutrient-replete conditions. RNAi experiments demonstrated that KRAS requires VMP1 to induce autophagy. Analysis of the mechanisms identified GLI3, a transcription factor regulated by the Hedgehog pathway, as an effector of KRAS signaling. GLI3 regulates autophagy as well as the expression and promoter activity of VMP1 in a Hedgehog-independent manner. Chromatin immunoprecipitation assays demonstrated that GLI3 binds to the VMP1 promoter and complexes with the histone acetyltransferase p300 to regulate promoter activity. Knockdown of p300 impaired KRAS- and GLI3-induced activation of this promoter. Finally, we identified the PI3K-AKT1 pathway as the signaling pathway mediating the expression and promoter activity of VMP1 upstream of the GLI3-p300 complex. Together, these data provide evidence of a new regulatory mechanism involved in autophagy that integrates this cellular process into the molecular network of events regulating oncogene-induced autophagy.


Assuntos
Autofagia , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas de Membrana/biossíntese , Neoplasias/mortalidade , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Regulação Neoplásica da Expressão Gênica/genética , Células HeLa , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Proteínas de Membrana/genética , Camundongos , Neoplasias/genética , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Elementos de Resposta/genética , Proteína Gli3 com Dedos de Zinco , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo , Proteínas ras/genética
11.
Pancreatology ; 12(1): 1-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22487466

RESUMO

Autophagy is an evolutionarily preserved degradation process of cytoplasmic cellular constituents and plays important physiological roles in human health and disease. It has been proposed that autophagy plays an important role both in tumor progression and in promotion of cancer cell death, although the molecular mechanisms responsible for this dual action of autophagy in cancer have not been elucidated. Pancreatic ductal adenocarcinoma is one of the most aggressive human malignancies with 2-3% five-year survival rate. Its poor prognosis has been attributed to the lack of specific symptoms and early detection tools, and its relatively refractory to traditional cytotoxic agents and radiotherapy. Experimental evidence pointed at autophagy as a pancreatic cancer cell mechanism to survive under adverse environmental conditions, or as a defective programmed cell death mechanism that favors pancreatic cancer cell resistance to treatment. Here, we consider several phenotypical alterations that have been related to increase or decrease the autophagic process in pancreatic tumor cells. We specially review autophagy as a cell death mechanism in response to chemotherapeutic drugs.


Assuntos
Autofagia , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Animais , Autofagia/efeitos dos fármacos , Capecitabina , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/análogos & derivados , Fluoruracila/uso terapêutico , Humanos , Prognóstico , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/fisiologia , Gencitabina
12.
J Biol Chem ; 286(10): 8308-8324, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21173155

RESUMO

Autophagy has recently elicited significant attention as a mechanism that either protects or promotes cell death, although different autophagy pathways, and the cellular context in which they occur, remain to be elucidated. We report a thorough cellular and biochemical characterization of a novel selective autophagy that works as a protective cell response. This new selective autophagy is activated in pancreatic acinar cells during pancreatitis-induced vesicular transport alteration to sequester and degrade potentially deleterious activated zymogen granules. We have coined the term "zymophagy" to refer to this process. The autophagy-related protein VMP1, the ubiquitin-protease USP9x, and the ubiquitin-binding protein p62 mediate zymophagy. Moreover, VMP1 interacts with USP9x, indicating that there is a close cooperation between the autophagy pathway and the ubiquitin recognition machinery required for selective autophagosome formation. Zymophagy is activated by experimental pancreatitis in genetically engineered mice and cultured pancreatic acinar cells and by acute pancreatitis in humans. Furthermore, zymophagy has pathophysiological relevance by controlling pancreatitis-induced intracellular zymogen activation and helping to prevent cell death. Together, these data reveal a novel selective form of autophagy mediated by the VMP1-USP9x-p62 pathway, as a cellular protective response.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Endopeptidases/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana/metabolismo , Pâncreas Exócrino/metabolismo , Pancreatite Necrosante Aguda/metabolismo , Ubiquitina Tiolesterase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular Tumoral , Endopeptidases/genética , Ativação Enzimática/genética , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Proteínas de Choque Térmico/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Pancreatite Necrosante Aguda/genética , Ratos , Proteína Sequestossoma-1 , Ubiquitina Tiolesterase/genética
13.
Pancreatology ; 10(1): 19-26, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20299819

RESUMO

BACKGROUND/AIM: Autophagy is a degradation process of cytoplasmic cellular constituents. We have described the vacuole membrane protein-1 (VMP1) whose expression triggers autophagy in mammalian cells. The aim of this study was to analyze the role of autophagy in human pancreatic cancer cell death. METHODS/RESULTS: Here we show that gemcitabine, the standard chemotherapy for pancreatic cancer, induced autophagy in PANC-1 and MIAPaCa-2 cells, as evidenced by the accumulation of acidic vesicular organelles, the recruitment of microtubule-associated protein-1 light chain-3, and electron microscopy. In addition, gemcitabine treatment induced early expression of VMP1 in cancer cells. Gemcitabine also induced apoptosis detected by morphology, annexin V-positive cells, and cleavage of caspase-3. Surprisingly, 3-methyladenine, an autophagy inhibitor, decreased apoptosis in gemcitabine-treated cells, showing that autophagy leads to cancer cell apoptotic death. Finally, VMP1 knockdown decreased autophagy and apoptosis in gemcitabine-treated cancer cells. CONCLUSIONS: The VMP1-autophagy pathway promotes apoptosis in pancreatic cancer cells and mediates gemcitabine-induced cytotoxicity. and IAP.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Proteínas de Membrana/fisiologia , Neoplasias Pancreáticas/patologia , Adenina/análogos & derivados , Adenina/farmacologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Desoxicitidina/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana/genética , Neoplasias Pancreáticas/metabolismo , Vacúolos/metabolismo , Gencitabina
14.
Autophagy ; 4(3): 388-90, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18253086

RESUMO

Autophagy is an early cellular event during acute pancreatitis, a disease defined as pancreas self-digestion. The Vacuole Membrane Protein 1 (VMP1) is a trans-membrane protein highly activated in acinar cells early during pancreatitis-induced autophagy and it remains in the autophagosomal membrane. We have shown that VMP1 expression is able to trigger autophagy in mammalian cells, even under nutrient-replete conditions. VMP1 is induced by autophagy stimuli and its expression is required for autophagosome development. VMP1 interacts with Beclin 1 through its hydrophilic C-terminal region, which we named Atg domain, as it is essential for autophagy. Remarkably, VMP1 pancreas-specific transgenic expression in mice promotes autophagosome formation. Most of the autophagy-related proteins were described in yeast or have a yeast homologue. VMP1 does not have any known homologue in yeast but its expression is required to start the autophagic process in mammalian cells. These findings support the hypothesis that mammalian cells may regulate autophagy in a different way. We propose that VMP1 is a novel autophagy related trans-membrane protein, which may lead the way in the search for alternative mechanisms of autophagosome formation.


Assuntos
Autofagia/fisiologia , Proteínas de Membrana/fisiologia , Doença Aguda , Animais , Proteínas Reguladoras de Apoptose/fisiologia , Proteína Beclina-1 , Humanos , Camundongos , Pancreatite/metabolismo , Fagossomos/fisiologia , Ligação Proteica , Proteínas/fisiologia , Transdução de Sinais
15.
J Biol Chem ; 282(51): 37124-33, 2007 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-17940279

RESUMO

Autophagy is a degradation process of cytoplasmic cellular constituents, which serves as a survival mechanism in starving cells, and it is characterized by sequestration of bulk cytoplasm and organelles in double-membrane vesicles called autophagosomes. Autophagy has been linked to a variety of pathological processes such as neurodegenerative diseases and tumorigenesis, which highlights its biological and medical importance. We have previously characterized the vacuole membrane protein 1 (VMP1) gene, which is highly activated in acute pancreatitis, a disease associated with morphological changes resembling autophagy. Here we show that VMP1 expression triggers autophagy in mammalian cells. VMP1 expression induces the formation of ultrastructural features of autophagy and recruitment of the microtubule-associated protein 1 light-chain 3 (LC3), which is inhibited after treatment with the autophagy inhibitor 3-methiladenine. VMP1 is induced by starvation and rapamycin treatments. Its expression is necessary for autophagy, because VMP1 small interfering RNA inhibits autophagosome formation under both autophagic stimuli. VMP1 is a transmembrane protein that co-localizes with LC3, a marker of the autophagosomes. It interacts with Beclin 1, a mammalian autophagy initiator, through the VMP1-Atg domain, which is essential for autophagosome formation. VMP1 endogenous expression co-localizes with LC3 in pancreas tissue undergoing pancreatitis-induced autophagy. Finally, VMP1 stable expression targeted to pancreas acinar cell in transgenic mice induces autophagosome formation. Our results identify VMP1 as a novel autophagy-related membrane protein involved in the initial steps of the mammalian cell autophagic process.


Assuntos
Autofagia , Proteínas de Membrana/biossíntese , Pancreatite Necrosante Aguda/metabolismo , Fagossomos/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Antibióticos Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteína Beclina-1 , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Células NIH 3T3 , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Pancreatite Necrosante Aguda/genética , Pancreatite Necrosante Aguda/patologia , Fagossomos/genética , Fagossomos/ultraestrutura , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Proteínas/genética , Proteínas/metabolismo , RNA Interferente Pequeno/farmacologia , Sirolimo/farmacologia
20.
Biochem Biophys Res Commun ; 319(3): 1001-9, 2004 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-15184081

RESUMO

We describe the cloning and expression of the mouse gene interferon-inducible-protein 15 (IP15), whose activation is related to the acute phase of experimental pancreatitis. Analysis of its structure indicates that it encodes a putative transmembrane protein of 137 amino acids. This gene contains a predicted IFN-stimulable-response element. In vivo studies showed that IP15 is strongly activated in pancreas early during caerulein-induced pancreatitis. In situ hybridization of IP15 mRNA showed that its expression is restricted to acinar cells. IP15 was also induced in pancreas under systemic-lipopolysaccharide treatment and in intestine under Salmonella infection. In vitro studies using NIH3T3 fibroblasts showed that IP15 is induced by IFN-alpha. Growth rate was significantly lower in cells transfected with pcDNA4/IP15 plasmid. In addition, cells expressing IP15 showed less capacity to develop colonies after antibiotic selection. In conclusion, we identified a new interferon-inducible gene that is activated early in pancreas with pancreatitis and whose expression inhibits cell growth.


Assuntos
Divisão Celular/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Pancreatite/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Ceruletídeo/toxicidade , Clonagem Molecular , Feminino , Feto/fisiologia , Humanos , Hibridização In Situ , Interferons/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Pâncreas/citologia , Pâncreas/fisiologia , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/patologia , Gravidez , RNA Mensageiro/metabolismo , Elementos de Resposta , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...