Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 41(3): 111488, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36260999

RESUMO

Cells possess several conserved adaptive mechanisms to respond to stress. Stress signaling is initiated to reestablish cellular homeostasis, but its effects on the tissue or systemic levels are far less understood. We report that the secreted luminal domain of the endoplasmic reticulum (ER) stress transducer CREB3L2 (which we name TAILS [transmissible activator of increased cell livability under stress]) is an endogenous, cell non-autonomous activator of neuronal resilience. In response to oxidative insults, neurons secrete TAILS, which potentiates hedgehog signaling through direct interaction with Sonic hedgehog (SHH) and its receptor PTCH1, leading to improved antioxidant signaling and mitochondrial function in neighboring neurons. In an in vivo model of ischemic brain injury, administration of TAILS enables survival of CNS neurons and fully preserves cognitive function in behavioral tests. Our findings reveal an SHH-mediated, cell non-autonomous branch of cellular stress signaling that confers resilience to oxidative stress in the mature brain, providing protection from ischemic neurodegeneration.


Assuntos
Antioxidantes , Proteínas Hedgehog , Proteínas Hedgehog/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia
2.
Int J Toxicol ; 38(6): 456-475, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31662008

RESUMO

Central nervous system (CNS)-targeted products are an important category of pediatric pharmaceuticals. In view of the significant postnatal maturation of the CNS, juvenile animal studies (JAS) are performed to support pediatric development of these new medicines. In this project, the design and results of juvenile toxicity studies from 15 drug compounds for the treatment of neurologic or psychiatric conditions were analyzed. Studies were conducted mostly in rats; sometimes in addition in dogs and monkeys. The study design of the pivotal JAS was variable, even for compounds with a similar therapeutic indication. Age of the juvenile animals was not consistently related to the starting age of the intended patient population. Of 15 compounds analyzed, 6 JAS detected more severe toxicities and 6 JAS evidenced novel CNS effects compared to their adult counterparts. The effects of CNS on acoustic startle and learning and memory were observed at high dosages. Reversibility was tested in most cases and revealed some small effects that were retained or only uncovered after termination of treatment. The interpretation of the relevance of these findings was often hampered by the lack of matching end points in the adult studies or inappropriate study designs. Detailed clinical observation and motor activity measures were the most powerful end points to detect juvenile CNS effects. The need for more detailed behavioral examinations in JAS, for example, on learning and memory, should, therefore, be decided upon on a case-by-case basis, based on specific concerns in order to avoid overloading the studies.


Assuntos
Fármacos do Sistema Nervoso Central/toxicidade , Sistema Nervoso Central/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Fatores Etários , Animais , Fármacos do Sistema Nervoso Central/administração & dosagem , Criança , Relação Dose-Resposta a Droga , Humanos
3.
Neuron ; 97(3): 477-478, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29420927

RESUMO

While PIWI-interacting RNAs (piRNAs) are primarily recognized as guardians of genome integrity, new functions of these small non-coding RNAs are emerging. In this issue, Kim et al. (2018) describe a piRNA-based mechanism that limits axon regeneration in C. elegans.


Assuntos
Axônios , Caenorhabditis elegans , Animais , Genoma , RNA Interferente Pequeno , Regeneração
4.
Results Probl Cell Differ ; 64: 201-215, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29149410

RESUMO

Although tctp expression in many areas of the human brain was reported more than 15 years ago, little was known about how it functions in neurons. The early notion that Tctp is primarily expressed in mitotic cells, together with reports suggesting a relative low abundance in the brain, has perhaps potentiated this almost complete disregard for the study of Tctp in the context of neuron biology. However, recent evidence has challenged this view, as a number of independent genome-wide profiling studies identified tctp mRNA among the most enriched in the axonal compartment across diverse neuronal populations, including embryonic retinal ganglion cells. Considering the emerging parallels between axon guidance and cancer cell invasion, the axonal expression of cancer-associated tctp was suggestive of it holding an unexplored role in the wiring of neuronal circuits. Our study revealed that Tctp is necessary for the accurate and timely development of axon projections during the formation of vertebrate retinal circuits via its association with the survival machinery of the axon. Globally, the findings indicate that compromised pro-survival signaling in Tctp-deficient axons results in mitochondrial dysfunction and a subsequent decrease in axonal mitochondrial density. These effects likely translate into a metabolic state inadequate to support the normal guidance and extension processes of a developing axon.


Assuntos
Axônios/metabolismo , Biomarcadores Tumorais/metabolismo , Vias Neurais , Biomarcadores Tumorais/genética , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retina/citologia , Retina/metabolismo , Transdução de Sinais , Proteína Tumoral 1 Controlada por Tradução
5.
Neuron ; 95(4): 852-868.e8, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28781168

RESUMO

Nascent proteins can be positioned rapidly at precise subcellular locations by local protein synthesis (LPS) to facilitate localized growth responses. Axon arbor architecture, a major determinant of synaptic connectivity, is shaped by localized growth responses, but it is unknown whether LPS influences these responses in vivo. Using high-resolution live imaging, we examined the spatiotemporal dynamics of RNA and LPS in retinal axons during arborization in vivo. Endogenous RNA tracking reveals that RNA granules dock at sites of branch emergence and invade stabilized branches. Live translation reporter analysis reveals that de novo ß-actin hotspots colocalize with docked RNA granules at the bases and tips of new branches. Inhibition of axonal ß-actin mRNA translation disrupts arbor dynamics primarily by reducing new branch emergence and leads to impoverished terminal arbors. The results demonstrate a requirement for LPS in building arbor complexity and suggest a key role for pre-synaptic LPS in assembling neural circuits.


Assuntos
Axônios/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , RNA/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Anisomicina/farmacologia , Biotina/metabolismo , Blastômeros , Carbocianinas/metabolismo , Cicloeximida/farmacologia , Nucleotídeos de Desoxiuracil/metabolismo , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas In Vitro , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mitocôndrias/metabolismo , Morfolinos/farmacologia , Oligonucleotídeos Antissenso/farmacologia , Técnicas de Cultura de Órgãos , Inibidores da Síntese de Proteínas/farmacologia , RNA/genética , Retina/citologia , Xenopus laevis
6.
Development ; 143(7): 1134-48, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26903505

RESUMO

The transcript encoding translationally controlled tumor protein (Tctp), a molecule associated with aggressive breast cancers, was identified among the most abundant in genome-wide screens of axons, suggesting that Tctp is important in neurons. Here, we tested the role of Tctp in retinal axon development in Xenopus laevis We report that Tctp deficiency results in stunted and splayed retinotectal projections that fail to innervate the optic tectum at the normal developmental time owing to impaired axon extension. Tctp-deficient axons exhibit defects associated with mitochondrial dysfunction and we show that Tctp interacts in the axonal compartment with myeloid cell leukemia 1 (Mcl1), a pro-survival member of the Bcl2 family. Mcl1 knockdown gives rise to similar axon misprojection phenotypes, and we provide evidence that the anti-apoptotic activity of Tctp is necessary for the normal development of the retinotectal projection. These findings suggest that Tctp supports the development of the retinotectal projection via its regulation of pro-survival signalling and axonal mitochondrial homeostasis, and establish a novel and fundamental role for Tctp in vertebrate neural circuitry assembly.


Assuntos
Axônios/metabolismo , Biomarcadores Tumorais/genética , Lobo Óptico de Animais não Mamíferos/embriologia , Retina/embriologia , Células Ganglionares da Retina/citologia , Vias Visuais/embriologia , Animais , Blastômeros/citologia , Células Cultivadas , Embrião não Mamífero/embriologia , Marcação In Situ das Extremidades Cortadas , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/fisiologia , Dinâmica Mitocondrial/genética , Morfolinos/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neurogênese/fisiologia , Ratos , Ratos Endogâmicos F344 , Células Ganglionares da Retina/metabolismo , Proteína Tumoral 1 Controlada por Tradução , Vias Visuais/metabolismo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...