Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e31958, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38868046

RESUMO

Multi-drug resistant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are a global health threat. The severity of the problem lies in its impact on mortality, therapeutic limitations, the threat to public health, and the costs associated with managing infections caused by these resistant strains. Effectively addressing this challenge requires innovative approaches to research, the development of new antimicrobials, and more responsible antibiotic use practices globally. Antimicrobial peptides (AMPs) are a part of the innate immune system of all higher organisms. They are short, cationic and amphipathic molecules with broad-spectrum activity. AMPs interact with the negatively charged bacterial membrane. In recent years, AMPs have attracted considerable interest as potential antibiotics. However, AMPs have low bioavailability and short half-lives, which may be circumvented by chemical modification. This review presents recent in vitro and in silico strategies for the modification of AMPs to improve their stability and application in preclinical experiments.

2.
Bioact Mater ; 39: 106-134, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38783925

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis, continues to pose a significant threat to global health. The resilience of TB is amplified by a myriad of physical, biological, and biopharmaceutical barriers that challenge conventional therapeutic approaches. This review navigates the intricate landscape of TB treatment, from the stealth of latent infections and the strength of granuloma formations to the daunting specters of drug resistance and altered gene expression. Amidst these challenges, traditional therapies often fail, contending with inconsistent bioavailability, prolonged treatment regimens, and socioeconomic burdens. Nanoscale Drug Delivery Systems (NDDSs) emerge as a promising beacon, ready to overcome these barriers, offering better drug targeting and improved patient adherence. Through a critical approach, we evaluate a spectrum of nanosystems and their efficacy against MTB both in vitro and in vivo. This review advocates for the intensification of research in NDDSs, heralding their potential to reshape the contours of global TB treatment strategies.

3.
Plants (Basel) ; 13(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38794435

RESUMO

The damask rose (Rosa damascena Mill.) is an ornamental-medicinal plant from the Rosaceae family, and its aromatic compounds and essential oils are applied globally in the food, cosmetic, and pharmaceutical industries. Due to its economic value, this research aimed to establish a protocol for an efficient, rapid, and cost-effective method for in vitro shoot multiplication and rooting of the R. damascena 'Kashan' and 'Hervy Azerbaijan' genotypes. Nodal segments (as primary explants) were cultured on the Murashige and Skoog (MS) medium with combinations of various plant growth regulators (PGRs) such as gibberellic acid (GA3), 6-benzylaminopurine (BAP), and indole-3-butyric acid (IBA), as well as a PGR-like substance, phloroglucinol (PG), vitamins such as ascorbic acid (AA), and activated carbon in the form of active charcoal (AC). For the establishment stage, 0.1 mg·L-1 PG, 0.2 mg·L-1 GA3, and 1 mg·L-1 BAP were added to the media. Secondary explants (nodal segments containing axillary buds produced from primary explants) were obtained after 30 days of in vitro culture and transferred to the proliferation media supplemented with different concentrations of BAP (0, 0.5, 1, 1.5, 2, and 2.5 mg·L-1) and GA3 (0, 0.1, 0.2, 0.4, 0.8, and 1 mg·L-1) together with 0.1 mg·L-1 PG and 20 mg·L-1 of AA. The rooting media were augmented with different concentrations of BAP and GA3 with 0.1 mg·L-1 of IBA, PG and 20 mg·L-1 of AA and AC. The results showed that the highest regeneration coefficient (4.29 and 4.28) and the largest number of leaves (23.33-24.33) were obtained in the explants grown on the medium supplemented with 2 mg·L-1 BAP and 0.4 mg·L-1 GA3 for the 'Kashan' and 'Hervy Azerbaijan' genotypes, respectively. Likewise, this PGR combination provided the shortest time until bud break (approximately 6.5 days) and root emergence (approximately 10 days) in both genotypes. The highest number of shoots (4.78 per explant) and roots (3.96) was achieved in this medium in the 'Kashan' rose. Stem and root lengths, as well as stem and root fresh and dry weights, were also analyzed. In most measured traits, the lowest values were found in the PGRs-free control medium. Rooted plantlets were transferred to pots filled with perlite and peat moss in a 2:1 proportion and were acclimatized to ambient greenhouse conditions with a mean 90.12% survival rate. This research contributes significantly to our understanding of Damask rose propagation and has practical implications for the cosmetic and ornamental plant industries. By offering insights into the manipulation of regeneration processes, our study opens up new possibilities for the effective production of high-quality plant material.

4.
Pharmaceutics ; 15(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38004578

RESUMO

Inflammatory bowel disease (IBD) is a chronic inflammatory disorder, most known as ulcerative colitis (UC) and Crohn's disease (CD), that affects the gastrointestinal tract (GIT), causing considerable symptoms to millions of people around the world. Conventional therapeutic strategies have limitations and side effects, prompting the exploration of innovative approaches. Probiotics, known for their potential to restore gut homeostasis, have emerged as promising candidates for IBD management. Probiotics have been shown to minimize disease symptoms, particularly in patients affected by UC, opening important opportunities to better treat this disease. However, they exhibit limitations in terms of stability and targeted delivery. As several studies demonstrate, the encapsulation of the probiotics, as well as the synthetic drug, into micro- and nanoparticles of organic materials offers great potential to solve this problem. They resist the harsh conditions of the upper GIT portions and, thus, protect the probiotic and drug inside, allowing for the delivery of adequate amounts directly into the colon. An overview of UC and CD, the benefits of the use of probiotics, and the potential of micro- and nanoencapsulation technologies to improve IBD treatment are presented. This review sheds light on the remarkable potential of nano- and microparticles loaded with probiotics as a novel and efficient strategy for managing IBD. Nonetheless, further investigations and clinical trials are warranted to validate their long-term safety and efficacy, paving the way for a new era in IBD therapeutics.

5.
Diseases ; 11(4)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37987261

RESUMO

The search for new antimicrobial agents is a continuous struggle, mainly because more and more cases of resistant strains are being reported. Mycobacterium tuberculosis (MTB) is the main microorganism responsible for millions of deaths worldwide. The development of new antimicrobial agents is generally aimed at finding strong interactions with one or more bacterial receptors. It has been proven that bacteriophages have the ability to adhere to specific and selective regions. However, their transport and administration must be carefully evaluated as an excess could prevent a positive response and the bacteriophages may be eliminated during their journey. With this in mind, the mycobacteriophage D29 was encapsulated in nanoliposomes, which made it possible to determine its antimicrobial activity during transport and its stability in the treatment of active and latent Mycobacterium tuberculosis. The antimicrobial activity, the cytotoxicity in macrophages and fibroblasts, as well as their infection and time-kill were evaluated. Phage nanoencapsulation showed efficient cell internalization to induce MTB clearance with values greater than 90%. Therefore, it was shown that nanotechnology is capable of assisting in the activity of degradation-sensitive compounds to achieve better therapy and evade the immune response against phages during treatment.

6.
Pharmaceutics ; 15(10)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37896169

RESUMO

Latent tuberculosis infection (LTBI) represents a subclinical, asymptomatic mycobacterial state affecting approximately 25% of the global population. The substantial prevalence of LTBI, combined with the risk of progressing to active tuberculosis, underscores its central role in the increasing incidence of tuberculosis (TB). Accurate identification and timely treatment are vital to contain and reduce the spread of the disease, forming a critical component of the global strategy known as "End TB." This review aims to examine and highlight the most recent scientific evidence related to new diagnostic approaches and emerging therapeutic treatments for LTBI. While prevalent diagnostic methods include the tuberculin skin test (TST) and interferon gamma release assay (IGRA), WHO's approval of two specific IGRAs for Mycobacterium tuberculosis (MTB) marked a significant advancement. However, the need for a specific test with global application viability has propelled research into diagnostic tests based on molecular diagnostics, pulmonary immunity, epigenetics, metabolomics, and a current focus on next-generation MTB antigen-based skin test (TBST). It is within these emerging methods that the potential for accurate distinction between LTBI and active TB has been demonstrated. Therapeutically, in addition to traditional first-line therapies, anti-LTBI drugs, anti-resistant TB drugs, and innovative candidates in preclinical and clinical stages are being explored. Although the advancements are promising, it is crucial to recognize that further research and clinical evidence are needed to solidify the effectiveness and safety of these new approaches, in addition to ensuring access to new drugs and diagnostic methods across all health centers. The fight against TB is evolving with the development of more precise diagnostic tools that differentiate the various stages of the infection and with more effective and targeted treatments. Once consolidated, current advancements have the potential to transform the prevention and treatment landscape of TB, reinforcing the global mission to eradicate this disease.

7.
Front Microbiol ; 14: 1183247, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342560

RESUMO

Tuberculosis and lung cancer are, in many cases, correlated diseases that can be confused because they have similar symptoms. Many meta-analyses have proven that there is a greater chance of developing lung cancer in patients who have active pulmonary tuberculosis. It is, therefore, important to monitor the patient for a long time after recovery and search for combined therapies that can treat both diseases, as well as face the great problem of drug resistance. Peptides are molecules derived from the breakdown of proteins, and the membranolytic class is already being studied. It has been proposed that these molecules destabilize cellular homeostasis, performing a dual antimicrobial and anticancer function and offering several possibilities of adaptation for adequate delivery and action. In this review, we focus on two important reason for the use of multifunctional peptides or peptides, namely the double activity and no harmful effects on humans. We review some of the main antimicrobial and anti-inflammatory bioactive peptides and highlight four that have anti-tuberculosis and anti-cancer activity, which may contribute to obtaining drugs with this dual functionality.

8.
Biomaterials ; 293: 121978, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36580719

RESUMO

The incorrect use of conventional drugs for both prevention and control of intestinal infections has contributed to a significant spread of bacterial resistance. In this way, studies that promote their replacement are a priority. In the last decade, the use of antimicrobial peptides (AMP), especially Ctx(Ile21)-Ha AMP, has gained strength, demonstrating efficient antimicrobial activity (AA) against pathogens, including multidrug-resistant bacteria. However, gastrointestinal degradation does not allow its direct oral application. In this research, double-coating systems using alginate microparticles loaded with Ctx(Ile21)-Ha peptide were designed, and in vitro release assays simulating the gastrointestinal tract were evaluated. Also, the AA against Salmonella spp. and Escherichia coli was examined. The results showed the physicochemical stability of Ctx(Ile21)-Ha peptide in the system and its potent antimicrobial activity. In addition, the combination of HPMCAS and chitosan as a gastric protection system can be promising for peptide carriers or other low pH-sensitive molecules, adequately released in the intestine. In conclusion, the coated systems employed in this study can improve the formulation of new foods or biopharmaceutical products for specific application against intestinal pathogens in animal production or, possibly, in the near future, in human health.


Assuntos
Anti-Infecciosos , Quitosana , Animais , Humanos , Quitosana/química , Alginatos/química , Peptídeos Antimicrobianos , Anti-Infecciosos/farmacologia
9.
Eur J Med Chem ; 241: 114640, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-35970075

RESUMO

Nanobiotechnology is a relatively unexplored area that has, nevertheless, shown relevant results in the fight against some diseases. Antimicrobial peptides (AMPs) are biomacromolecules with potential activity against multi/extensively drug-resistant bacteria, with a lower risk of generating bacterial resistance. They can be considered an excellent biotechnological alternative to conventional drugs. However, the application of several AMPs to biological systems is hampered by their poor stability and lifetime, inactivating them completely. Therefore, nanotechnology plays an important role in the development of new AMP-based drugs, protecting and carrying the bioactive to the target. This is the first review article on the different reported nanosystems using AMPs against bacteria listed on the WHO priority list. The current shortage of information implies a nanobiotechnological potential to obtain new drugs or repurpose drugs based on the AMP-drug synergistic effect.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias , Preparações Farmacêuticas , Organização Mundial da Saúde
10.
Life (Basel) ; 12(8)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36013419

RESUMO

Biotechnology and pharmacy have shown efficient results when combined to generate innovative technological products [...].

11.
ACS Omega ; 7(32): 28238-28247, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35990469

RESUMO

The importance of obtaining new compounds with improved antimicrobial activity is a current trend and challenge. Some polymers such as chitosan have shown promising bactericidal properties when they are structurally modified, which is due to the binding versatility provided by their free amines. Likewise, antimicrobial peptides (AMPs) have received attention in recent years because of their bactericidal activity that is similar to or even better than that of conventional drugs, and they exhibit a low induction rate of antimicrobial resistance. Herein, the modified AMP Ctx(Ile21)-Ha-Ahx-Cys was conjugated to chitosan using N-acetylcysteine as an intermediate by the carbodiimide method. Films were prepared using protonated chitosan in 1% acetic acid and Ctx(Ile21)-Ha-Ahx-Cys AMP dissolved in N-acetylcysteine-chitosan; 1.6 mmol of ethylcarbodiimide hydrochloride, 1.2 mmol of N-hydroxysulfosucchimide, and 0.1 mol L -1of N-morpholino)ethanesulfonic acid buffer at pH 6.5 by continuous stirring at 100 × g for 10 min at 37 °C. Physicochemical properties were evaluated by Fourier-transform infrared spectroscopy, differential scanning calorimetry/thermogravimetric analysis, and X-ray diffraction to determine the mechanical properties, solubility, morphology, and thickness. Furthermore, the antimicrobial activities of chitosan-based conjugated films were evaluated againstStaphylococcus aureus,Pseudomonas aeruginosa,SalmonellaTyphimurium, andEscherichia coli. The results showed that the conjugation of a potent AMP could further increase its antibacterial activity and maintain its stable physicochemical properties. Therefore, the developed peptide-chitosan conjugate could be applied as an additive in surgical procedures to prevent and combat bacterial infection.

12.
Drug Dev Res ; 83(7): 1534-1554, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36042694

RESUMO

Bacterial resistance is a problem that is giving serious cause for concern because bacterial strains such as Acinetobacter baumannii and Pseudomonas aeruginosa are difficult to treat and highly opportunistic. These bacteria easily acquire resistance genes even from other species, which confers greater persistence and tolerance towards conventional antibiotics. These bacteria have the highest death rate in hospitalized intensive care patients, so strong measures must be taken. In this review, we focus on the use of antimicrobial peptides (AMPs) as an alternative to traditional drugs, due to their rapid action and lower risk of generating resistance by microorganisms. We also present an overview of beta-lactams and explicitly explain the activity of AMPs against carbapenemase-producing bacteria as potential alternative agents for infection control.


Assuntos
Acinetobacter baumannii , Peptídeos Antimicrobianos , Humanos , Resistência beta-Lactâmica/genética , Acinetobacter baumannii/genética , beta-Lactamas/farmacologia , Antibacterianos/farmacologia , Bactérias , Testes de Sensibilidade Microbiana
13.
Life (Basel) ; 12(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35888137

RESUMO

Vitamins are widely found in nature, for example, in plants and fruits. Ascorbic acid and nicotinamide are examples of these compounds that have potent antioxidant properties, besides stimulating collagen production and depigmenting properties that protect the skin from premature aging. To overcome the skin barrier and reduce the instability of antioxidant compounds, alternative systems have been developed to facilitate the delivery of antioxidants, making them efficiently available to the tissue for an extended time without causing damage or toxicity. The objective of this study was to obtain chitosan biodegradable microparticles containing ascorbic acid and nicotinamide for topical delivery. The microparticles were obtained by spray drying and characterized chemically by means of scanning electron microscopy, infrared spectroscopy, X-ray diffraction, and differential exploratory calorimetry. The drugs were successfully encapsulated and the microparticles showed positive zeta potential. In vitro release assays showed a sustained release profile. The evaluation of ex vivo skin permeation and retention demonstrated low permeation and adequate retention of the compounds in the epidermis/dermis, suggesting the efficient delivery from the obtained microparticles. Antibacterial assays have shown that microparticles can inhibit the growth of microorganisms in a time- and dose-dependent manner, corroborating their use in cosmetic products for application on the skin.

14.
Pharmaceutics ; 14(5)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35631477

RESUMO

Some diseases of uncontrolled proliferation such as cancer, as well as infectious diseases, are the main cause of death in the world, and their causative agents have rapidly developed resistance to the various existing treatments, making them even more dangerous. Thereby, the discovery of new therapeutic agents is a challenge promoted by the World Health Organization (WHO). Biomacromolecules, isolated or synthesized from a natural template, have therapeutic properties which have not yet been fully studied, and represent an unexplored potential in the search for new drugs. These substances, starting from conglomerates of proteins and other substances such as animal venoms, or from minor substances such as bioactive peptides, help fight diseases or counteract harmful effects. The high effectiveness of these biomacromolecules makes them promising substances for obtaining new drugs; however, their low bioavailability or stability in biological systems is a challenge to be overcome in the coming years with the help of nanotechnology. The objective of this review article is to describe the relationship between the structure and function of biomacromolecules of animal origin that have applications already described using nanotechnology and targeted delivery.

15.
ACS Infect Dis ; 8(3): 472-481, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35230825

RESUMO

Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) in poultry is most often transmitted by the fecal-oral route, which can be attributed to high population density. Upon encountering the innate immune response in a host, the pathogen triggers a stress response and virulence factors to help it survive in the host. The aim of this study was to evaluate the effect of hypromellose acetate/succinate (HPMCAS)-coated alginate microparticles containing the Ctx(Ile21)-Ha antimicrobial peptide (AMP) on both intestinal colonization and systemic infection of laying hens challenged with S. Enteritidis. The applied AMP microsystem reduced the bacterial load of S. Enteritidis in the liver, with a statistical significance between groups A (control, no Ctx(Ile21)-Ha peptide) and B (2.5 mg of Ctx(Ile21)-Ha/kg) at 2 days postinfection (dpi), potentially indicating the effectiveness of Ctx(Ile21)-Ha in the first stage of infection by S. Enteritidis. In addition, the results showed a significant decrease in the S. Enteritidis counts in the spleen and cecal content at 5 dpi; remarkably, no S. Enteritidis counts were observed in livers at 5, 7, and 14 dpi, regardless of the Ctx(Ile21)-Ha dosage (p-value <0.0001). Using the Chi-square test, the effect of AMP microparticles on S. Enteritidis fecal excretion was also evaluated, and a significantly lower bacterial excretion was observed over 21 days in groups B and C, in comparison with the untreated control (p-value <0.05). In summary, the use of HPMCAS-Ctx(Ile21)-Ha peptide microcapsules in laying hens drastically reduced the systemic infection of S. Enteritidis, mainly in the liver, indicating a potential for application as a feed additive against this pathogen.


Assuntos
Anti-Infecciosos , Salmonelose Animal , Alginatos , Animais , Galinhas/microbiologia , Galinhas/fisiologia , Feminino , Metilcelulose/análogos & derivados , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/microbiologia , Salmonella enteritidis/fisiologia
16.
Pharmaceutics ; 14(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35336016

RESUMO

Bacterial resistance is an emergency public health problem worldwide, compounded by the ability of bacteria to form biofilms, mainly in seriously ill hospitalized patients. The World Health Organization has published a list of priority bacteria that should be studied and, in turn, has encouraged the development of new drugs. Herein, we explain the importance of studying new molecules such as antimicrobial peptides (AMPs) with potential against multi-drug resistant (MDR) and extensively drug-resistant (XDR) bacteria and focus on the inhibition of biofilm formation. This review describes the main causes of antimicrobial resistance and biofilm formation, as well as the main and potential AMP applications against these bacteria. Our results suggest that the new biomacromolecules to be discovered and studied should focus on this group of dangerous and highly infectious bacteria. Alternative molecules such as AMPs could contribute to eradicating biofilm proliferation by MDR/XDR bacteria; this is a challenging undertaking with promising prospects.

17.
Curr Med Chem ; 29(17): 3079-3110, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34391374

RESUMO

The diseases affecting the Central Nervous System (CNS) can have varied etiopathology, but they have in common silent progression, global incidence, and significant impacts on the quality of life of patients and public health systems. With the advance of biomedicine and pharmaceutical technology, new and more modern diagnostic methods and treatments were developed, repurposing the use of drugs currently available for the treatment of CNS diseases. An attractive approach is the use of alternative drug delivery platforms, such as nanocarriers, and less invasive administration routes, such as the noseto- brain, extensively explored for the delivery of drugs into the CNS. Despite many promising results, the nose-to-brain route has some physiological limitations that make it difficult to deliver drugs satisfactorily to exert therapeutic activity in the CNS. To overcome these limitations, nanostructured systems with mucoadhesive properties have stood out over the last few years in pharmaceutical R&D. In this review; we discuss how the noseto- brain route limitations can influence the delivery of drugs to the CNS and highlight the benefits that mucoadhesion can bring to these nanostructured systems. The main findings in the literature are brought together and discussed critically, focusing on how mucoadhesion can improve the biopharmaceutical properties of molecules used in the clinic, as well as their biological performance. Finally, conclusions are drawn about the points of strength of mucoadhesive nanosystems and the points that still need attention to successfully use the nose-to-brain route for the treatment of diseases that affect the CNS.


Assuntos
Doenças do Sistema Nervoso Central , Sistemas de Liberação de Medicamentos , Administração Intranasal , Encéfalo , Doenças do Sistema Nervoso Central/tratamento farmacológico , Humanos , Preparações Farmacêuticas , Qualidade de Vida
18.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200414

RESUMO

Numerous environmental and endogenous factors affect the level of genetic diversity in natural populations. Genetic variability is the cornerstone of evolution and adaptation of species. However, currently, more and more plant species and local varieties (landraces) are on the brink of extinction due to anthropopression and climate change. Their preservation is imperative for the sake of future breeding programs. Gene banks have been created worldwide to conserve different plant species of cultural and economic importance. Many of them apply cryopreservation, a conservation method in which ultra-low temperatures (-135 °C to -196 °C) are used for long-term storage of tissue samples, with little risk of variation occurrence. Cells can be successfully cryopreserved in liquid nitrogen (LN) when the adverse effect of ice crystal formation and growth is mitigated by the removal of water and the formation of the so-called biological glass (vitrification). This state can be achieved in several ways. The involvement of key cold-regulated genes and proteins in the acquisition of cold tolerance in plant tissues may additionally improve the survival of LN-stored explants. The present review explains the importance of cryostorage in agronomy and presents an overview of the recent works accomplished with this strategy. The most widely used cryopreservation techniques, classic and modern cryoprotective agents, and some protocols applied in crops are considered to understand which parameters provide the establishment of high quality and broadly applicable cryopreservation. Attention is also focused on the issues of genetic integrity and functional genomics in plant cryobiology.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Criopreservação/métodos , Crioprotetores/farmacologia , Melhoramento Vegetal , Brotos de Planta/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Vitrificação , Protoplastos
19.
Antibiotics (Basel) ; 10(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064051

RESUMO

The constant use of synthetic antibiotics as growth promoters can cause bacterial resistance in chicks. Consequently, the use of these drugs has been restricted in different countries. In recent years, antimicrobial peptides have gained relevance due to their minimal capacity for bacterial resistance and does not generate toxic residues that harm the environment and human health. In this study, a Ctx(Ile21)-Ha antimicrobial peptide was employed, due to its previously reported great antimicrobial potential, to evaluate its application effects in laying chicks challenged with Salmonella Enteritidis, resistant to nalidixic acid and spectinomycin. For this, Ctx(Ile21)-Ha was synthesized, microencapsulated and coated with hypromellose phthalate (HPMCP) to be released in the intestine. Two different doses (20 and 40 mg of Ctx(Ile21)-Ha per kg of isoproteic and isoenergetic poultry feed) were included in the chick's food and administered for 28 days. Antimicrobial activity, effect and response as treatment were evaluated. Statistical results were analyzed in detail and indicate that the formulated Ctx(Ile21)-Ha peptide had a positive and significant effect in relation to the reduction of chick mortality in the first days of life. However, there was moderate evidence (p = 0.07), not considered statistically significant, in the differences in laying chick weight between the control and microencapsulation treatment groups as a function of time. Therefore, the microencapsulated Ctx(Ile21)-Ha antimicrobial peptide can be an interesting and promising option in the substitution of conventional antibiotics.

20.
Pharmaceutics ; 13(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064302

RESUMO

Bacterial resistance has intensified in recent years due to the uncontrolled use of conventional drugs, and new bacterial strains with multiple resistance have been reported. This problem may be solved by using antimicrobial peptides (AMPs), which fulfill their bactericidal activity without developing much bacterial resistance. The rapid interaction between AMPs and the bacterial cell membrane means that the bacteria cannot easily develop resistance mechanisms. In addition, various drugs for clinical use have lost their effect as a conventional treatment; however, the synergistic effect of AMPs with these drugs would help to reactivate and enhance antimicrobial activity. Their efficiency against multi-resistant and extensively resistant bacteria has positioned them as promising molecules to replace or improve conventional drugs. In this review, we examined the importance of antimicrobial peptides and their successful activity against critical and high-priority bacteria published in the WHO list.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...