RESUMO
This study aimed to evaluate the effect of nano-encapsulation of four essential amino acids (AA), threonine, methionine, tryptophan, and lysine on in vitro ruminal total gas, methane, carbon monoxide, and hydrogen sulfide production as well as the rumen fermentation profile in cattle. The highest (P < 0.001) rate and asymptotic gas production after 48 h of incubation was observed in the diets that had threonine, followed by lysine, methionine, and tryptophan. Asymptotic methane gas production decreased in the following order: threonine > lysine > tryptophan > methionine (P < 0.0001) and the rate of production per hour followed the same trend (P = 0.0259). CH4 parameters showed that in 4 h, 24 h, and 48 h of incubation the lowest methane production was obtained in the diet with methionine (P < 0.05) and the highest one in diet supplemented with threonine. Methane fractions showed that methionine-containing diets resulted in more (P < 0.05) metabolizable energy versus methane, followed by tryptophan-containing, and then lysine-containing diets. Methionine-fortified diets seem to be the most eco-friendly among those studied regarding methane output. However, based on methane, CO, and H2S output as well as the rumen fermentation profile nano-encapsulated lysine is recommended for use in ruminant nutrition.
RESUMO
BioCholine Powder is a polyherbal feed additive composed of Achyrantes aspera, Trachyspermum ammi, Azadirachta indica, and Citrullus colocynthis. The objective of this study was to analyze published results that support the hypothesis that the polyherbal product BioCholine Powder has rumen bypass choline metabolites through a meta-analysis and effect size analysis (ES). Using Scopus, Web of Science, ScienceDirect, PubMed, and university dissertation databases, a systematic search was conducted for experiments published in scientific documents that evaluated the effects of BioCholine supplementation on the variables of interest. The analyzed data were extracted from twenty-one publications (fifteen scientific articles, three abstracts, and three graduate dissertations available in institutional libraries). The studies included lamb growing-finishing, lactating ewes and goats, calves, and dairy cows. The effects of BioCholine were analyzed using random effects statistical models to compare the weighted mean difference (WMD) between BioCholine-supplemented ruminants and controls (no BioCholine). Heterogeneity was explored, and three subgroup analyses were performed for doses [(4 (or 5 g/d), 8 (10 g/d)], supplementation in gestating and lactating ewes (pre- and postpartum supplementation), and blood metabolites by species and physiological state (lactating goats, calves, lambs, ewes). Supplementation with BioCholine in sheep increased the average daily lamb gain (p < 0.05), final body weight (p < 0.01), and daily milk yield (p < 0.05) without effects on intake or feed conversion. Milk yield was improved in small ruminants with BioCholine prepartum supplementation (p < 0.10). BioCholine supplementation decreased blood urea (p < 0.01) and increased levels of the liver enzymes alanine transaminase (ALT; p < 0.10) and albumin (p < 0.001). BioCholine doses over 8 g/d increased blood glucose, albumin (p < 0.10), cholesterol, total protein, and globulin (p < 0.05). The ES values of BioCholine in retained energy over the control in growing lambs were +7.15% NEm (p < 0.10) and +9.25% NEg (p < 0.10). In conclusion, adding BioCholine Powder to domestic ruminants' diets improves productive performance, blood metabolite indicators of protein metabolism, and liver health, showing its nutraceutical properties where phosphatidylcholine prevails as an alternative that can meet the choline requirements in ruminants.
RESUMO
Previous research indicates that adequate choline nutrition during late gestation improves fetal development. However, there is a lack of studies describing choline's role during early gestation. Thus, the current study hypothesizes that an herbal mixture as a source of choline (Biocholine) positively affects offspring development from ewes supplemented during early gestation. Therefore, the objectives were to evaluate the impact of biocholine on the programming of the offspring early in life through the evaluation of dams and newborn performance. Twenty-eight four-year-old Rambouillet ewes were assigned randomly to two treatments: non-supplementation and 4 gd-1 of biocholine during the early gestation. Compared with the dams without supplementation, the ewes supplemented using biocholine showed no increase in parameters such as birth and weaning weight (p > 0.05). Additionally, the milk yield and quality of colostrum and milk did not present statistical differences (p > 0.05). However, the placental membrane development was reduced in the ewes that received supplementation with biocholine; interestingly, those dams increased the weight of the newborns during the lambing period (p < 0.05). Finally, the current study proposes necessary elucidation of how placental size is programmed and if less placental development has potential benefits in the fetus's development.
RESUMO
This experiment aimed to evaluate the effects of herbal vitamin C at different levels on tilapia (Oreochromis spp.) growth, potential DNA damage, and the metabolomic profile of water effluent. Forty-five tilapias were housed in separate plastic tanks (80 L), and these were randomly assigned to three treatments: (a) a commercial diet (CD) only; (Nutripec Purina®); (b) the commercial diet plus 250 mg of herbal vitamin C (HVC)/kg (CD250); and (c) the commercial diet plus 500 mg of HVC/kg (CD500). Biometric measurements were taken each week, blood samples were collected from the caudal vein on the final day, and water effluent was taken each week and immediately frozen (-80 °C) until further analysis (gas chromatography/mass spectrometry (GC/MS) systems). Data were completely randomized with a 2 × 2 factorial arrangement of treatments. Upon including herbal vitamin C, the final BW (p = 0.05) and BWG (p = 0.06) increased linearly. Herbal vitamin C decreases DNA damage (p ≥ 0.05). PLS-DA showed a 41.6% variation between treatments in the water samples. Fifteen metabolites had the best association between treatments, with a stronger correlation with CD500. Herbal vitamin C could improve fish performance, prevent DNA damage, and influence changes in the metabolomic profile of the water.
RESUMO
Electronic devices have been used to describe chemical compounds in the food industry. However, there are different models and manufacturers of these devices; thus, there has been little consistency in the type of compounds and methods used for identification. This work aimed to determine the applicability of electronic nose (e-nose) Cyroanose 320 to describe the differentiation of volatile organic compounds (VOCs) in fresh Mexican cheese (F-MC) formulated with milk from two different dairy cattle breeds. The VOCs were described using a device manufactured by Sensigent and Solid-Phase Micro-extraction (SPME) coupled to GC-MS as a complementary method. The multivariate principal components analysis (PCA) and the partial least squares discriminant analysis (PLS-DA) were used to describe the relationships of VOCs to electronic nose data, sensory data, and response levels. In addition, variable importance in projection (VIP) was performed to characterize the e-nose signals to the VOCs. The e-nose distinguishes F-MC prepared with milk from two dairy breeds. Sensor number 31 correlated with carboxylic acids most in F-MC from Jersey milk. The HS-SPME/GC-MS identified eighteen VOCs in F-MC made with Holstein milk, while only eleven VOCs were identified for F-MC made with Jersey milk. The more significant peaks in both chromatogram analyses were Propanoic acid, 2-methyl-, 1-(1,1-dimethylethyl)-2-methyl-1,3-propanediyl ester in cheese made from Holstein milk and Propanoic acid, 2-methyl-, 3-hydroxy-2,4,4-trimethylpentyl ester in Jersey milk cheese. Both compounds are considered essential carboxylic acids in the dairy industry. Thus, sensor 31 in the electronic nose Cyranose 320 increased its response by essential carboxylic acids identified by HS-SPME/GC-MS as a complementary method. The e-nose Cyranose 320 is potentially helpful for evaluating fresh Mexican cheese authentication independent of cows' milk samples from different breeds.
RESUMO
The objective of this experiment was to evaluate the effects of feeding different levels concentrations of dietary calcium propionate (CaPr) on lambs' growth performance; ruminal fermentation parameters; glucose-insulin concentration; and hypothalamic mRNA expression for neuropeptide Y (NPY), agouti-related peptide (AgRP), and proopiomelanocortin (POMC). Thirty-two individually fed lambs were randomly assigned to four treatments: (1) control diet (0 g/kg of CaPr), (2) low CaPr, (30 g/kg dry matter (DM)), (3) medium CaPr, (35 g/kg DM), and (4) high CaPr (40 g/kg DM). After 42 days of feeding, lambs were slaughtered for collecting samples of the hypothalamus. Data were analyzed as a complete randomized design, and means were separated using linear and quadratic polynomial contrast. Growth performance was not affected (p ≥ 0.11) by dietary CaPr inclusion. The ruminal concentration of total volatile fatty acids (VFA) increased linearly (p = 0.04) as dietary CaPr increased. Likewise, a linear increase in plasma insulin concentration (p = 0.03) as dietary CaPr concentration increased. The relative mRNA expression of NPY exhibited a quadratic effect (p < 0.01), but there were significant differences in the mRNA expression of AgRP and POMC (p ≥ 0.10). Dietary calcium propionate did not improve lamb growth performance in lambs feed with only forage diets. Intake was not correlated with feed intake with mRNA expression of neuropeptides.
RESUMO
Nutrition plays a critical role in developmental programs. These effects can be during gametogenesis, gestation, or early life. Omega-3 polyunsaturated fatty acids (PUFA) are essential for normal physiological functioning and for the health of humans and all domestic species. Recent studies have demonstrated the importance of n-3 PUFA in ruminant diets during gestation and its effects on pre-and postnatal offspring growth and health indices. In addition, different types of fatty acids have different metabolic functions, which affects the developmental program differently depending on when they are supplemented. This review provides a broad perspective of the effect of fatty acid supplementation on the developmental program in ruminants, highlighting the areas of a developmental program that are better known and the areas that more research may be needed.
RESUMO
Herbal formulas during pregnancy have been used in developing countries. Despite that, the potential effects on the mother and offspring and whether those supplements elicit epigenetic modifications is still unknown. Therefore, our objectives were to determine the effects of supplemental herbal choline source (BCho) on the percentage of 5-hmC in whole blood from gestating ewes and their offspring, as well as determining the milk quality and growth of the offspring. Thirty-five gestating Rambouillet ewes were randomly assigned to five treatments: T1, supplementation of 4 g per day (gd-1) of BCho during the first third of gestation; T2, supplementation of 4 gd-1 of BCho during the second third of gestation; T3, supplementation of 4 gd-1 of BCho during the last third of gestation; T4, supplementation of 4 gd-1 of BCho throughout gestation; and T5, no BCho supplementation (control). For the 5-hmC DNA analysis, whole blood from ewes was sampled before pregnancy and at each third of gestation (50 days). Whole blood from lambs was sampled five weeks after birth. The evaluation of the nutritional programming effects was conducted through the percentages of 5-hmC in the lambs. Compared with other treatments, the whole blood from ewes supplemented during T1 and T4 had the greatest 5-hmC percentages (p < 0.05). However, only ewes fed BCho throughout gestation (T4) maintained the greatest percentages of 5-hmC (p < 0.05). The lamb growth performance indicated that the BCho maternal supplementation did not affect the nutritional programming. However, the lambs born from ewes supplemented during T2 had the greatest 5-hmC percentages (p < 0.05). Our data suggest that ewes supplemented during T4 with BCho increase and maintain the percentages of 5-hmC in whole blood, and the offspring born from ewes supplemented with BCho during T2 maintained the greatest percentages of 5-hmC 35 d after they were born.