Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Cybern ; 118(1-2): 83-110, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597964

RESUMO

Mathematical modeling of neuronal dynamics has experienced a fast growth in the last decades thanks to the biophysical formalism introduced by Hodgkin and Huxley in the 1950s. Other types of models (for instance, integrate and fire models), although less realistic, have also contributed to understand neuronal dynamics. However, there is still a vast volume of data that have not been associated with a mathematical model, mainly because data are acquired more rapidly than they can be analyzed or because it is difficult to analyze (for instance, if the number of ionic channels involved is huge). Therefore, developing new methodologies to obtain mathematical or computational models associated with data (even without previous knowledge of the source) can be helpful to make future predictions. Here, we explore the capability of a wavelet neural network to identify neuronal (single-cell) dynamics. We present an optimized computational scheme that trains the ANN with biologically plausible input currents. We obtain successful identification for data generated from four different neuron models when using all variables as inputs of the network. We also show that the empiric model obtained is able to generalize and predict the neuronal dynamics generated by variable input currents different from those used to train the artificial network. In the more realistic situation of using only the voltage and the injected current as input data to train the network, we lose predictive ability but, for low-dimensional models, the results are still satisfactory. We understand our contribution as a first step toward obtaining empiric models from experimental voltage traces.


Assuntos
Modelos Neurológicos , Redes Neurais de Computação , Neurônios , Neurônios/fisiologia , Animais , Humanos , Potenciais de Ação/fisiologia , Simulação por Computador
2.
EXCLI J ; 20: 727-747, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33907540

RESUMO

Workers' intensive use of hand tool cutting in the meat packing industry is a risk factor for occupational health, mainly by mechanical compression of tissues in the upper limbs, which can cause Work-Related Musculoskeletal Disorders (WMSDs). This systematic review aimed to identify the characteristics and measured variables of instrumented knives and determine how they should be designed. The review process and article extractions occurred through an analysis of the (article) titles, keywords and abstracts, followed by reading the full texts by two reviewers independently. Searches were conducted in Medline, Web of Science, Science Direct, Scopus, Ebsco and Engineering Village for articles published in peer-reviewed journals from January 2000 to March 2019, in the English language. The result of (the) search included 1289 potentially eligible studies, with 894 duplicated/triplicated/quadruplicated articles that were excluded, resulting in 404 remaining articles of which 33 were considered eligible, with 36 additional articles, totaling 69 evaluated full texts. After the review, none of the 14 analyzed studies, were rated as having good methodological quality. In addition, four types of instrumented knives were used. Data acquisition was performed in both laboratory and meat processing plants. It is noteworthy that only one knife was submitted to a validation process and that the articles did not provide complete technical information about the knives. The result demonstrated that the cutting force varies within and between subjects, tasks, plants and blade finishings. All knives used some type of electrical connection via cable or wires. Of the articles found, none considered the influences that the workers are subject to when they do not use the same tool daily for data acquisition. Therefore, the development of different types of instrumented knives, with wireless data transmission and more rigorous studies are necessary to expand the knowledge of the cutting force and development of WMSD in slaughterhouse workers who perform meat cutting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...