Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 90(7): 073001, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31370447

RESUMO

We report on the implications that the temporal and spatial beam metrologies have on the accuracy of temporal scaling laws of Laser Induced Damage Threshold (LIDT) for dielectric materials in the picosecond regime. Thanks to a specific diagnostic able to measure the temporal pulse shape of subpicosecond and picosecond pulses, we highlight through simulations and experiments how the temporal shape has to be taken into account first in order to correctly understand the temporal dependency of dielectrics LIDT. This directly eases the interpretation of experimental temporal scaling laws of LIDT and improves their accuracy as a prediction means. We also give numerically determined benchmark temporal scaling laws of intrinsic LIDT for SiO2 (thin film) based on the model developed for this work. Finally, we show as well what kind of spatial metrology is needed during any temporal scaling law determination to take into account potential variations of the spatial profile.

2.
Opt Express ; 27(12): 16922-16934, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31252910

RESUMO

Owing to their relatively high resistance to laser-induced damage, hafnia and silica are commonly used in multilayered optical coatings in high-power laser facilities as high- and low-refractive-index materials, respectively. Here, we quantify the laser-induced-damage threshold (LIDT) at 1053 nm in the short-pulse regime of hafnia and silica monolayers deposited by different fabrication methods, including electron-beam evaporation, plasma ion-assisted deposition and ion-assisted deposition. The results demonstrate that nominally identical coatings fabricated by different deposition techniques and/or vendors can exhibit significantly different damage thresholds. A correlation of the LIDT performance of each material with its corresponding absorption edge is investigated. Our analysis indicates a weak correlation between intrinsic LIDT and the optical gap of each material (Tauc gap) but a much better correlation when considering the spectral characteristics in the Urbach tail spectral range. Spectrophotometry and photothermal absorption were used to provide evidence of the correlation between the strength of the red-shifted absorption tail and reduced LIDT at 1053 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...