Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 431(2): 351-367, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30471256

RESUMO

C4-dicarboxylates play a central role in cellular physiology as key metabolic intermediates. Under aerobic conditions, they participate in the citric acid cycle, while in anaerobic bacteria, they are important in energy-conserving fermentation and respiration processes. Ten different families of secondary transporters have been described to participate in C4-dicarboxylate movement across biological membranes, but only one of these utilizes an extracytoplasmic solute binding protein to achieve high-affinity uptake. Here, we identify the MatBAC system from the photosynthetic bacterium Rhodopseudomonas palustris as the first member of the tripartite tricarboxylate transport family to be involved in C4-dicarboxylate transport. Tryptophan fluorescence spectroscopy showed that MatC, the periplasmic binding protein from this system, binds to l- and d-malate with Kd values of 27 and 21 nM, respectively, the highest reported affinity to date for these C4-dicarboxylates, and to succinate (Kd = 110 nM) and fumarate (Kd = 400 nM). The 2.1-Šcrystal structure of MatC with bound malate shows a high level of substrate coordination, with participation of two water molecules that bridge hydrogen bonds between the ligand proximal carboxylic group and the main chain of two conserved loops in the protein structure. The substrate coordination in MatC correlates with the binding data and explains the protein's selectivity for different substrates and respective binding affinities. Our results reveal a new function in C4-dicarboxylate transport by members of the poorly characterized tripartite tricarboxylate transport family, which are widely distributed in bacterial genomes but for which details of structure-function relationships and transport mechanisms have been lacking.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Periplasma/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Rodopseudomonas/metabolismo , Sequência de Aminoácidos , Transporte Biológico/fisiologia , Fumaratos/metabolismo , Malatos/metabolismo , Ácido Succínico/metabolismo
2.
Microb Genom ; 4(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29667925

RESUMO

Lineage-specific expansion (LSE) of protein families is a widespread phenomenon in many eukaryotic genomes, but is generally more limited in bacterial genomes. Here, we report the presence of 434 genes encoding solute-binding proteins (SBPs) from the tripartite tricarboxylate transporter (TTT) family, within the 8.2 Mb genome of the α-proteobacterium Rhodoplanes sp. Z2-YC6860, a gene family over-representation of unprecedented abundance in prokaryotes. Representing over 6 % of the total number of coding sequences, the SBP genes are distributed across the whole genome but are found rarely in low-GC islands, where the gene density for this family is much lower. This observation, and the much higher sequence identity between the 434 Rhodoplanes TTT SBPs compared with the average identity between homologues from different species, is indicative of a key role for LSE in the expansion. The TTT SBP genes were found in the vicinity of genes encoding membrane components of transport systems from different families, as well as regulatory proteins such as histidine-kinases and transcription factors, indicating a broad range of functions around the sensing, response and transport of organic compounds. A smaller expansion of TTT SBPs is known in some species of the ß-proteobacteria Bordetella and we observed similar expansions in other ß-proteobacterial lineages, including members of the genus Comamonas and the industrial biotechnology organism Cupriavidus necator, indicating that strong environmental selection can drive SBP duplication and specialisation from multiple evolutionary starting points.


Assuntos
Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Genes Bacterianos/genética , Hyphomicrobiaceae/genética , Hyphomicrobiaceae/metabolismo , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Proteínas de Bactérias/genética , Bordetella/genética , Comamonas/genética , Cupriavidus necator/genética , Tamanho do Genoma , Genoma Bacteriano , Histidina Quinase/genética , Proteínas Periplásmicas de Ligação/biossíntese , Proteínas Periplásmicas de Ligação/genética , Fatores de Transcrição/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-29479520

RESUMO

The ability to efficiently scavenge nutrients in the host is essential for the viability of any pathogen. All catabolic pathways must begin with the transport of substrate from the environment through the cytoplasmic membrane, a role executed by membrane transporters. Although several classes of cytoplasmic membrane transporters are described, high-affinity uptake of substrates occurs through Solute Binding-Protein (SBP) dependent systems. Three families of SBP dependant transporters are known; the primary ATP-binding cassette (ABC) transporters, and the secondary Tripartite ATP-independent periplasmic (TRAP) transporters and Tripartite Tricarboxylate Transporters (TTT). Far less well understood than the ABC family, the TRAP transporters are found to be abundant among bacteria from marine environments, and the TTT transporters are the most abundant family of proteins in many species of ß-proteobacteria. In this review, recent knowledge about these families is covered, with emphasis on their physiological and structural mechanisms, relating to several examples of relevant uptake systems in pathogenicity and colonization, using the SiaPQM sialic acid uptake system from Haemophilus influenzae and the TctCBA citrate uptake system of Salmonella typhimurium as the prototypes for the TRAP and TTT transporters, respectively. High-throughput analysis of SBPs has recently expanded considerably the range of putative substrates known for TRAP transporters, while the repertoire for the TTT family has yet to be fully explored but both types of systems most commonly transport carboxylates. Specialized spectroscopic techniques and site-directed mutagenesis have enriched our knowledge of the way TRAP binding proteins capture their substrate, while structural comparisons show conserved regions for substrate coordination in both families. Genomic and protein sequence analyses show TTT SBP genes are strikingly overrepresented in some bacteria, especially in the ß-proteobacteria and some α-proteobacteria. The reasons for this are not clear but might be related to a role for these proteins in signaling rather than transport.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Transporte Biológico , Proteínas de Membrana Transportadoras/química , Família Multigênica , Ligação Proteica , Subunidades Proteicas , Relação Estrutura-Atividade , Virulência
4.
FEBS J ; 284(24): 4262-4277, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29082669

RESUMO

The tripartite tricarboxylate transporter (TTT) family is a poorly characterised group of prokaryotic secondary solute transport systems, which employ a periplasmic substrate-binding protein (SBP) for initial ligand recognition. The substrates of only a small number of TTT systems are known and very few SBP structures have been solved, so the mechanisms of SBP-ligand interactions in this family are not well understood. The SBP RPA4515 (AdpC) from Rhodopseudomonas palustris was found by differential scanning fluorescence and isothermal titration calorimetry to bind aliphatic dicarboxylates of a chain length of six to nine carbons, with KD values in the µm range. The highest affinity was found for the C6-dicarboxylate adipate (1,6-hexanedioate). Crystal structures of AdpC, either adipate or 2-oxoadipate bound, revealed a lack of positively charged amino acids in the binding pocket and showed that water molecules are involved in bridging hydrogen bonds to the substrate, a conserved feature in the TTT SBP family that is distinct from other types of SBP. In AdpC, both of the ligand carboxylate groups and a linear chain conformation are needed for coordination in the binding pocket. RT-PCR showed that adpC expression is upregulated by low environmental adipate concentrations, suggesting adipate is a physiologically relevant substrate but as adpC is not genetically linked to any TTT membrane transport genes, the role of AdpC may be in signalling rather than transport. Our data expand the known ligands for TTT systems and identify a novel high-affinity binding protein for adipate, an important industrial chemical intermediate and food additive. DATABASES: Protein structure co-ordinates are available in the PDB under the accession numbers 5OEI and 5OKU.


Assuntos
Adipatos/metabolismo , Transportadores de Ácidos Dicarboxílicos/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Rodopseudomonas/metabolismo , Adipatos/farmacologia , Sequência de Aminoácidos , Cristalografia por Raios X , DNA Bacteriano/genética , Transportadores de Ácidos Dicarboxílicos/genética , Ácidos Dicarboxílicos/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Cinética , Ligantes , Modelos Moleculares , Proteínas Periplásmicas de Ligação/química , Proteínas Periplásmicas de Ligação/genética , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Proteínas Recombinantes de Fusão/química , Rodopseudomonas/genética , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...