Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comput Chem ; 44(31): 2424-2436, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37638684

RESUMO

The alternant polycyclic aromatic hydrocarbon pyrene has photophysical properties that can be tuned with different donor and acceptor substituents. Recently, a D (donor)-Pyrene (bridge)-A (acceptor) system, DPA, with the electron donor N,N-dimethylaniline (DMA), and the electron acceptor trifluoromethylphenyl (TFM), was investigated by means of time-resolved spectroscopic measurements (J. Phys. Chem. Lett. 2021, 12, 2226-2231). DPA shows great promise for potential applications in organic electronic devices. In this work, we used the ab initio second-order algebraic diagrammatic construction method ADC(2) to investigate the excited-state properties of a series of analogous DPA systems, including the originally synthesized DPAs. The additionally investigated substituents were amino, fluorine, and methoxy as donors and nitrile and nitro groups as acceptors. The focus of this work was on characterizing the lowest excited singlet states regarding charge transfer (CT) and local excitation (LE) characters. For the DMA-pyrene-TFM system, the ADC(2) calculations show two initial electronic states relevant for interpreting the photodynamics. The bright S1 state is locally excited within the pyrene moiety, and an S2 state is localized ~0.5 eV above S1 and characterized as a donor to pyrene CT state. HOMO and LUMO energies were employed to assess the efficiency of the DPA compounds for organic photovoltaics (OPVs). HOMO-LUMO and optical gaps were used to estimate power conversion and light-harvesting efficiencies for practical applications in organic solar cells. Considering the systems using smaller D/A substituents, compounds with the strong acceptor NO2 substituent group show enhanced CT and promising properties for use in OPVs. Some of the other compounds with small substituents are also found to be competitive in this regard.

2.
J Biol Inorg Chem ; 25(7): 963-978, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32914401

RESUMO

Several studies with substitution-inert polynuclear platinum(II) complexes (SI-PPC) have been carried out in recent years due to the form of DNA binding presented by these compounds. This form of bonding is achieved by molecular recognition through the formation of non-covalent structures, commonly called phosphate clamps and forks, which generate small extensions of the major and minor grooves. In this work, we use molecular dynamics simulations (MD) to study the formation of these cyclical structures between six different SI-PPCs and a double DNA dodecamer, here called 24_bp_DNA. The results showed the influence of the complex expressed on the number of phosphate clamps and forks formed. Based on the conformational characterization of the DNA fragment, we show that the studied SI-PPCs interact preferentially in the minor groove, causing groove spanning, except for two of them, Monoplatin and AH44. The phosphates of C-G pairs are the main sites for such non-covalent interactions. The Gibbs interaction energy of solvated species points out to AH78P, AH78H, and TriplatinNC as the most probable ones when coupled with DNA. As far as we know, this work is the very first one related to SI-PPCs which brings MD simulations and a complete analysis of the non-covalent interactions with a double DNA dodecamer.


Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , DNA/metabolismo , Simulação de Dinâmica Molecular , Platina/química , DNA/química , Conformação de Ácido Nucleico , Termodinâmica
3.
Front Chem ; 7: 307, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231629

RESUMO

The class of polynuclear platinum(II) compounds have demonstrated a great interest because their high activity against cancer cells. Among these new compounds, the TriplatinNC also called AH78, demonstrated surprising antitumor activity, in some cases equivalent to cisplatin. It is well-known that complex charge +8 favors interaction with DNA and other biomolecules non-covalently, through the hydrogen bonds with phosphate and sulfate groups present in these structures. The hydrogen atoms of the amine interact with the oxygen atoms of the phosphate and sulfate groups present in the DNA strand and heparan sulfate, respectively. These interactions can cause significant twists in double helix and inhibit the activity of these biomolecules. The present investigation is an attempt to provide a benchmark theoretical study about TriplatinNC. We have described the non-covalent interactions through small reliable mimetic models. The non-covalent interactions were also evaluated on larger models containing DNA fractions with six nitrogenous base pairs (CGCGAA) and fractions of the disaccharide that makes the HS evaluated by the hybrid QM/MM ONIOM methodology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...