Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(9): 093402, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489609

RESUMO

Engineering pairs of massive particles that are simultaneously correlated in their external and internal degrees of freedom is a major challenge, yet essential for advancing fundamental tests of physics and quantum technologies. In this Letter, we experimentally demonstrate a mechanism for generating pairs of atoms in well-defined spin and momentum modes. This mechanism couples atoms from a degenerate Bose gas via a superradiant photon-exchange process in an optical cavity, producing pairs via a single channel or two discernible channels. The scheme is independent of collisional interactions, fast, and tunable. We observe a collectively enhanced production of pairs and probe interspin correlations in momentum space. We characterize the emergent pair statistics and find that the observed dynamics is consistent with being primarily seeded by vacuum fluctuations in the corresponding atomic modes. Together with our observations of coherent many-body oscillations involving well-defined momentum modes, our results offer promising prospects for quantum-enhanced interferometry and quantum simulation experiments using entangled matter waves.

2.
Phys Rev Lett ; 131(14): 143604, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37862667

RESUMO

We consider theoretically a driven-dissipative quantum many-body system consisting of an atomic ensemble in a single-mode optical cavity as described by the open Tavis-Cummings model. In this hybrid light-matter system, the interplay between coherent and dissipative processes leads to superradiant pulses with a buildup of strong correlations, even for systems comprising hundreds to thousands of particles. A central feature of the mean-field dynamics is a self-reversal of two spin degrees of freedom due to an underlying time-reversal symmetry, which is broken by quantum fluctuations. We demonstrate a quench protocol that can maintain highly non-Gaussian states over long timescales. This general mechanism offers interesting possibilities for the generation and control of complex fluctuation patterns, as suggested for the improvement of quantum sensing protocols for dissipative spin amplification.

3.
Phys Rev Lett ; 128(15): 153601, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35499900

RESUMO

Three-level atomic systems coupled to light have the capacity to host dark states. We study a system of V-shaped three-level atoms coherently coupled to the two quadratures of a dissipative cavity. The interplay between the atomic level structure and dissipation makes the phase diagram of the open system drastically different from the closed one. In particular, it leads to the stabilization of a continuous family of dark and nearly dark excited many-body states with inverted atomic populations as the steady states. The multistability of these states can be probed via their distinct fluctuations and excitation spectra, as well as the system's Liouvillian dynamics which are highly sensitive to ramp protocols. Our model can be implemented experimentally by encoding the two higher-energy modes in orthogonal density-modulated states in a bosonic quantum gas. This implementation offers prospects for potential applications like the realization of quantum optical random walks and microscopy with subwavelength spatial resolution.

4.
Phys Rev Lett ; 128(14): 143602, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35476481

RESUMO

We report on the experimental realization and detection of dynamical currents in a spin-textured lattice in momentum space. Collective tunneling is implemented via cavity-assisted Raman scattering of photons by a spinor Bose-Einstein condensate into an optical cavity. The photon field inducing the tunneling processes is subject to cavity dissipation, resulting in effective directional dynamics in a non-Hermitian setting. We observe that the individual tunneling events are superradiant in nature and locally resolve them in the lattice by performing real-time, frequency-resolved measurements of the leaking cavity field. The results can be extended to a regime exhibiting a cascade of currents and simultaneous coherences between multiple lattice sites, where numerical simulations provide further understanding of the dynamics. Our observations showcase dynamical tunneling in momentum-space lattices and provide prospects to realize dynamical gauge fields in driven-dissipative settings.

5.
Phys Rev Lett ; 123(6): 063603, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31491167

RESUMO

We augment the information extractable from a single absorption image of a spinor Bose-Einstein condensate by coupling to initially empty auxiliary hyperfine states. Performing unitary transformations in both the original and auxiliary hyperfine manifold enables the simultaneous measurement of multiple spin-1 observables. We apply this scheme to an elongated atomic cloud of ^{87}Rb to simultaneously read out three orthogonal spin directions and with that directly access the spatial spin structure. The readout even allows the extraction of quantum correlations which we demonstrate by detecting spin-nematic squeezing without state tomography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...