Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891570

RESUMO

Although the presence of female contact sex pheromones in P. vannamei has been hypothesized, to date its existence has not been proven. To gather more evidence of their existence, cuticular liposoluble extracts were obtained from the following samples of adult females to be used as the experimental treatments: (1) ventral exoskeleton of immature female (VI), (2) dorsolateral exoskeleton of immature female (DI), (3) ventral exoskeleton of mature female (VM), and (4) dorsolateral exoskeleton of mature female (DM). Polyvinyl chloride tubes (artificial females; AF) were coated with each extract and the behavior displayed by sexually mature males in contact with the AF was recorded and classified as follows: 0 = no response; 1 = contact; 2 = pushing; and 3 = prolonged contact (≥10 s). To test the hypothesis that the extracts collected from the ventral portion of the abdomen exoskeleton have a higher effect on the behavior of males than the extracts collected from the dorsolateral portion of the abdomen exoskeleton, the experiment was divided into two bioassays: Bioassay I (VI vs. DI) and Bioassay II (VM vs. DM). In each bioassay, all experimental treatments were significantly different (p > 0.05) from the CTL group (AF coated with hexane). Notably, the pushing behavior was significantly higher (p < 0.05) in the VI treatment compared to the CTL and DI treatment. These results provide evidence of the existence of contact female sex pheromones with sexual recognition function located primarily in the ventral portion of the abdomen exoskeleton of P. vannamei.

2.
Microorganisms ; 7(8)2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31357481

RESUMO

This study presents the potential effects of the genetic background and use of probiotics on the gut bacterial composition of Pacific whiteleg shrimp (Litopenaeus vannamei) grown in an indoor aquaculture facility. The strains investigated were Shrimp Improvement Systems (SIS, Islamorada, FL, USA), a strain genetically selected for disease resistance, and an Oceanic Institute (OI, Oahu, HI, USA) strain, selected for growth performance. BioWish 3P (BioWish Technologies, Cincinnati, OH, USA) was the selected probiotic. The study consisted of two separate trials, where all shrimp were raised under standard industry conditions and fed the same diet. Shrimp were stocked in 2920 L production tanks at a density of 200/m3 and acclimated for 14 days. After the acclimation period, triplicate tanks were supplemented daily for a duration of 28 days with probiotics, while three other tanks did not receive any treatment (controls). During the 28-day trial period, there was no statistically supported difference (p > 0.05) in either performance or health status as a result of genetic background or probiotic treatment. However, differences in gut bacterial composition, as assessed by high throughput sequencing of amplicons generated from the V1-V3 region of the bacterial 16S rRNA gene, were observed. The relative abundance of five major operational taxonomic units (OTUs) were found to vary significantly across experimental groups (p < 0.05). Notably, operational taxonomic unit (OTU) SD_Shr-00006 was at its highest abundance in d43 SIS samples, with levels greater than d71 samples of the same genetic line or any of the OI shrimp samples. OTUs for SD_Shr-00098 displayed a similar type of profile, but with highest abundance in the OI genetic line and lowest in the SIS shrimp. SD_Shr-00004 showed an opposite profile, with highest abundance in the SIS d71 samples and lowest in the SIS d43 samples. Together, these results suggest that host genetic background can be an important determinant of gut bacterial composition in aquaculture-raised whiteleg shrimp and indicate that development of strategies to manipulate the microbiome of this important seafood will likely need to be customized depending on the genetic line.

3.
Microorganisms ; 7(4)2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30935061

RESUMO

Considering the crucial role of the gut microbiome in animal health and nutrition, solutions to shrimp aquaculture challenges, such as improving disease resistance and optimizing growth on lower cost feeds, may lie in manipulation of their microbial symbionts. However, achieving this goal will require a deeper understanding of shrimp microbial communities and how their composition is influenced by diet formulation, environmental conditions, and host factors. In this context, the current study investigated the intestinal bacterial communities of the Pacific whiteleg shrimp (Litopenaeus vannamei-the most widely aquaculture-farmed shrimp worldwide) reared in indoor aquaculture facilities and outdoor pond systems. While samples showed very consistent intestinal bacterial community profiles within each production system, major differences were uncovered between the two practices. Indeed, bacteria affiliated with Rhodobacteraceae (Proteobacteria) and Actinobacteria were significantly more abundant in indoor samples (84.4% vs. 5.1%; 3.0% vs. 0.06%, respectively), while Vibrionaceae (Proteobacteria), Firmicutes, Fusobacteria and Cyanobacteria were predominant in pond samples (0.03% vs. 44.8%; 0.7% vs. 36.0%; 0.0% vs. 7.9%; 0.001% vs. 1.6%, respectively). Accordingly, the abundance of 11 of the 12 most prominent Operational Taxonomic Units (OTUs) were found to be statistically different between the two production environments. Together, these results indicate that aquaculture practices greatly influence the intestinal bacterial profile of the whiteleg shrimp, and further suggest that bacterial communities of this economically important crustacean could be effectively manipulated using diet composition or environmental conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...