Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071343

RESUMO

The thermal performance of closed-cell foams as an insulation device depends on the thermal conductivity. In these systems, the heat transfer mode associated with the convective contribution is generally ignored, and studies are based on the thermo-physical properties that emerge from the conductive contribution, while others include a term for radiative transport. The criterion found in the literature for disregarding convective heat flux is the cell diameter; however, the cell size for which convection is effectively suppressed has not been clearly disclosed, and it is variously quoted in the range 3-10 mm. In practice, changes in thermal conductivity are also attributed to the convection heat transfer mode; hence, natural convection in porous materials is worthy of research. This work extends the field of study of conjugate heat transfer (convection and conduction) in cellular materials using microstructure-based finite element analysis. For air-based insulating materials, the criteria to consider natural convection (Ra=103) is met by cavities with sizes of 9.06 mm; however, convection is developed into several cavities despite their sizes being lower than 9.06 mm, hence, the average pore size that can effectively suppress the convective heat transfer is 6.0 mm. The amount of heat transported by convection is about 20% of the heat transported by conduction within the foam in a Ra=103, which, in turn, produces an increasing average of the conductivity of about 4.5%, with respect to a constant value.

2.
J Colloid Interface Sci ; 500: 126-132, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28407596

RESUMO

The styrene (St) emulsion polymerization using Aerosol MA80 as surfactant and in the presence of sodium styrene sulfonate (NaSS) was studied. The effect of NaSS content was assessed using MA80 concentrations below and at the critical micellar concentration. It was found that at the higher NaSS and MA80 contents, the number of particles (N) reaches a maximum of the order of 1017particles/cm3 water, a huge value that has never been reported. In this work an explanation for this super-enhanced particle nucleation phenomenon is proposed. Such hypothesis is based on the role of St-NaSS oligomers formed in the aqueous phase and their synergy with MA80 molecules to provide colloidal stability to the system. The proposal seems to be consistent with the experimental data obtained for the evolution of monomer conversion, N, particles size distribution and the wideness of this latter as well as with a theoretical estimation of the N.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA