Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Children (Basel) ; 9(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36360343

RESUMO

Knowledge of the sequencing of the 16S rRNA gene constitutes a true revolution in understanding the composition of the intestinal microbiota and its implication in health states. This study details microbial composition through next-generation sequencing (NGS) technology in children with anemia. Anemia is the most frequent hematological disorder that affects human beings. In Peru, it is one of the conditions that presents the most significant concern due to the adverse effects that cause it, such as delayed growth and psychomotor development, in addition to a deficiency in cognitive development.

2.
New Phytol ; 226(6): 1622-1637, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31916258

RESUMO

Land surface models (LSMs) typically use empirical functions to represent vegetation responses to soil drought. These functions largely neglect recent advances in plant ecophysiology that link xylem hydraulic functioning with stomatal responses to climate. We developed an analytical stomatal optimization model based on xylem hydraulics (SOX) to predict plant responses to drought. Coupling SOX to the Joint UK Land Environment Simulator (JULES) LSM, we conducted a global evaluation of SOX against leaf- and ecosystem-level observations. SOX simulates leaf stomatal conductance responses to climate for woody plants more accurately and parsimoniously than the existing JULES stomatal conductance model. An ecosystem-level evaluation at 70 eddy flux sites shows that SOX decreases the sensitivity of gross primary productivity (GPP) to soil moisture, which improves the model agreement with observations and increases the predicted annual GPP by 30% in relation to JULES. SOX decreases JULES root-mean-square error in GPP by up to 45% in evergreen tropical forests, and can simulate realistic patterns of canopy water potential and soil water dynamics at the studied sites. SOX provides a parsimonious way to incorporate recent advances in plant hydraulics and optimality theory into LSMs, and an alternative to empirical stress factors.


Assuntos
Ecossistema , Xilema , Clima , Secas , Florestas , Folhas de Planta , Água
3.
New Phytol ; 224(4): 1544-1556, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31215647

RESUMO

Biomass and area ratios between leaves, stems and roots regulate many physiological and ecological processes. The Huber value Hv (sapwood area/leaf area ratio) is central to plant water balance and drought responses. However, its coordination with key plant functional traits is poorly understood, and prevents developing trait-based prediction models. Based on theoretical arguments, we hypothesise that global patterns in Hv of terminal woody branches can be predicted from variables related to plant trait spectra, that is plant hydraulics and size and leaf economics. Using a global compilation of 1135 species-averaged Hv , we show that Hv varies over three orders of magnitude. Higher Hv are seen in short small-leaved low-specific leaf area (SLA) shrubs with low Ks in arid relative to tall large-leaved high-SLA trees with high Ks in moist environments. All traits depend on climate but climatic correlations are stronger for explanatory traits than Hv . Negative isometry is found between Hv and Ks , suggesting a compensation to maintain hydraulic supply to leaves across species. This work identifies the major global drivers of branch sapwood/leaf area ratios. Our approach based on widely available traits facilitates the development of accurate models of above-ground biomass allocation and helps predict vegetation responses to drought.


Assuntos
Folhas de Planta/fisiologia , Madeira/fisiologia , Bases de Dados Factuais , Árvores/fisiologia , Água/metabolismo , Xilema/fisiologia
4.
New Phytol ; 223(2): 632-646, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30636323

RESUMO

Trait variability in space and time allows plants to adjust to changing environmental conditions. However, we know little about how this variability is distributed and coordinated at different organizational levels. For six dominant tree species in northeastern Spain (three Fagaceae and three Pinaceae) we quantified the inter- and intraspecific variability of a set of traits along a water availability gradient. We measured leaf mass per area (LMA), leaf nitrogen (N) concentration, carbon isotope composition in leaves (δ13 C), stem wood density, the Huber value (Hv, the ratio of cross-sectional sapwood area to leaf area), sapwood-specific and leaf-specific stem hydraulic conductivity, vulnerability to xylem embolism (P50 ) and the turgor loss point (Ptlp ). Differences between families explained the largest amount of variability for most traits, although intraspecific variability was also relevant. Species occupying wetter sites showed higher N, P50 and Ptlp , and lower LMA, δ13 C and Hv. However, when trait relationships with water availability were assessed within species they held only for Hv and Ptlp . Overall, our results indicate that intraspecific adjustments along the water availability gradient relied primarily on changes in resource allocation between sapwood and leaf area and in leaf water relations.


Assuntos
Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Água , Modelos Lineares , Característica Quantitativa Herdável
5.
Ann Bot ; 121(7): 1383-1396, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29893878

RESUMO

Background and Aims: The relationship between plant carbon economy and drought responses of co-occurring woody species can be assessed by comparing carbohydrate (C) dynamics following drought and rain periods, relating these dynamics to species' functional traits. We studied nine woody species coexisting in a continental Mediterranean shrubland that experienced severe drought effects followed by rain. Methods: We measured total non-structural carbohydrates (NSC) and soluble sugars (SS) in roots and stems during drought and after an autumn rain pulse in plants exhibiting leaf loss and in undefoliated ones. We explored whether their dynamics were related to foliage recovery and functional traits (height [H], specific leaf area [SLA], wood density [WD]). Key Results: During drought, NSC concentrations were overall lower in stems and roots of plants experiencing leaf loss, while SS decreases were smaller. Roots had higher NSC concentrations than stems. After the rain, NSC concentrations continued to decrease, while SS increased. Green foliage recovered after rain, particularly in plants previously experiencing higher leaf loss, independently of NSC concentrations during drought. Species with lower WD tended to have more SS during drought and lower SS increases after rain. In low-WD species, plants with severe leaf loss had lower NSC relative to undefoliated ones. No significant relationship was found between H or SLA and C content or dynamics. Conclusions: Our community-level study reveals that, while responses were species-specific, C stocks overall diminished in plants affected by prolonged drought and did not increase after a pulse of seasonal rain. Dynamics were faster for SS than NSC. We found limited depletion of SS, consistent with their role in basal metabolic, transport and signalling functions. In a scenario of increased drought under climate change, NSC stocks in woody plants are expected to decrease differentially in coexisting species, with potential implications for their adaptive abilities and community dynamics.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Plantas/metabolismo , Carboidratos/análise , Desidratação , Ecossistema , Folhas de Planta/química , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/química , Caules de Planta/química , Plantas/química , Madeira/química
6.
Tree Physiol ; 35(11): 1146-65, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26423132

RESUMO

Non-structural carbohydrates (NSC) in plant tissue are frequently quantified to make inferences about plant responses to environmental conditions. Laboratories publishing estimates of NSC of woody plants use many different methods to evaluate NSC. We asked whether NSC estimates in the recent literature could be quantitatively compared among studies. We also asked whether any differences among laboratories were related to the extraction and quantification methods used to determine starch and sugar concentrations. These questions were addressed by sending sub-samples collected from five woody plant tissues, which varied in NSC content and chemical composition, to 29 laboratories. Each laboratory analyzed the samples with their laboratory-specific protocols, based on recent publications, to determine concentrations of soluble sugars, starch and their sum, total NSC. Laboratory estimates differed substantially for all samples. For example, estimates for Eucalyptus globulus leaves (EGL) varied from 23 to 116 (mean = 56) mg g(-1) for soluble sugars, 6-533 (mean = 94) mg g(-1) for starch and 53-649 (mean = 153) mg g(-1) for total NSC. Mixed model analysis of variance showed that much of the variability among laboratories was unrelated to the categories we used for extraction and quantification methods (method category R(2) = 0.05-0.12 for soluble sugars, 0.10-0.33 for starch and 0.01-0.09 for total NSC). For EGL, the difference between the highest and lowest least squares means for categories in the mixed model analysis was 33 mg g(-1) for total NSC, compared with the range of laboratory estimates of 596 mg g(-1). Laboratories were reasonably consistent in their ranks of estimates among tissues for starch (r = 0.41-0.91), but less so for total NSC (r = 0.45-0.84) and soluble sugars (r = 0.11-0.83). Our results show that NSC estimates for woody plant tissues cannot be compared among laboratories. The relative changes in NSC between treatments measured within a laboratory may be comparable within and between laboratories, especially for starch. To obtain comparable NSC estimates, we suggest that users can either adopt the reference method given in this publication, or report estimates for a portion of samples using the reference method, and report estimates for a standard reference material. Researchers interested in NSC estimates should work to identify and adopt standard methods.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Carboidratos/química , Laboratórios/normas , Árvores/química , Técnicas de Química Analítica , Folhas de Planta/química , Raízes de Plantas/química , Caules de Planta/química , Especificidade da Espécie , Amido , Árvores/metabolismo
7.
Front Plant Sci ; 4: 400, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130568

RESUMO

Stored non-structural carbohydrates (NSC) have been proposed as a key determinant of drought resistance in plants. However, the evidence for this role is controversial, as it comes mostly from observational, short-term studies. Here, we take advantage of a long-term experimental throughfall reduction to elucidate the response of NSC to increased drought 14 years after the beginning of the treatment in three Mediterranean resprouter trees (Quercus ilex L., Arbutus unedo L. and Phillyrea latifolia L.). In addition, we selected 20 Q. ilex individuals outside the experimental plots to directly assess the relationship between defoliation and NSC at the individual level. We measured the seasonal course of NSC concentrations in leaves, branches and lignotuber in late winter, late spring, summer, and autumn 2012. Total concentrations of NSC were highest in the lignotuber for all species. In the long-term drought experiment we found significant depletion in concentrations of total NSC in treatment plots only in the lignotuber of A. unedo. At the same time, A. unedo was the only species showing a significant reduction in BAI under the drought treatment during the 14 years of the experiment. By contrast, Q. ilex just reduced stem growth only during the first 4 years of treatment and P. latifolia remained unaffected over the whole study period. However, we found a clear association between the concentrations of NSC and defoliation in Q. ilex individuals sampled outside the experimental plots, with lower total concentrations of NSC and lower proportion of starch in defoliated individuals. Taken together, our results suggest that stabilizing processes, probably at the stand level, may have been operating in the long-term to mitigate any impact of drought on NSC levels, and highlight the necessity to incorporate long-term experimental studies of plant responses to drought.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...