Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 274(Pt 2): 133482, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38942409

RESUMO

Cellulose modified hydrogels can be produced directly from raw biopolymers in novel cellulose solvents such as NaOH/urea aqueous solution. The effect of cellulose characteristics on the synthesis of a cellulose-graft-(net-poly(acrylamide-co-acrylic acid)) and its performance as water absorbent/methylene blue dye removal material is analyzed. Three cellulose samples, one analytical grade and two obtained from teak wood sawdust with different pretreatments (one alkaline and the other, a novel one known as (gas phase) acid pretreatment) were compared. The starting raw celluloses were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and viscosity in cupri ethylenediamine hydroxide (CED) solution, whereas the chemically modified materials were characterized by SEM, FTIR, and TGA. The pretreatment used influences composition, crystallinity index and degree of polymerization (DP) of the cellulose obtained. The modified material produced with cellulose from alkaline pretreatment showed the highest swelling ratio in water absorption tests at room temperature (12,714 %); in contrast, the one with cellulose from acid pretreatment showed the lowest swelling ratio (7,470 %). However, this difference is not so significative in dye removal tests, where absorption capacity is 139 and 140 mg/g, respectively. The results indicate that cellulose composition, particularly structures with significant hemicellulose and lignin remaining content, has a major effect on the performance of modified materials for water absorption, and degree of polymerization has a major effect on adsorption capacity of methylene blue.


Assuntos
Celulose , Corantes , Lignina , Água , Madeira , Lignina/química , Celulose/química , Água/química , Madeira/química , Corantes/química , Resinas Acrílicas/química , Azul de Metileno/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Purificação da Água/métodos , Poluentes Químicos da Água/química , Acrilamidas/química
2.
Molecules ; 27(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36558077

RESUMO

The production of biofuels, such as bioethanol from lignocellulosic biomass, is an important task within the sustainable energy concept. Understanding the metabolism of ethanologenic microorganisms for the consumption of sugar mixtures contained in lignocellulosic hydrolysates could allow the improvement of the fermentation process. In this study, the ethanologenic strain Escherichia coli MS04 was used to ferment hydrolysates from five different lignocellulosic agroindustrial wastes, which contained different glucose and xylose concentrations. The volumetric rates of glucose and xylose consumption and ethanol production depend on the initial concentration of glucose and xylose, concentrations of inhibitors, and the positive effect of acetate in the fermentation to ethanol. Ethanol yields above 80% and productivities up to 1.85 gEtOH/Lh were obtained. Furthermore, in all evaluations, a simultaneous co-consumption of glucose and xylose was observed. The effect of deleting the xyIR regulator was studied, concluding that it plays an important role in the metabolism of monosaccharides and in xylose consumption. Moreover, the importance of acetate was confirmed for the ethanologenic strain, showing the positive effect of acetate on the co-consumption rates of glucose and xylose in cultivation media and hydrolysates containing sugar mixtures.


Assuntos
Repressão Catabólica , Escherichia coli , Fermentação , Escherichia coli/metabolismo , Xilose/metabolismo , Glucose/metabolismo , Açúcares/metabolismo , Etanol/metabolismo
3.
Mater Sci Eng C Mater Biol Appl ; 121: 111650, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33579431

RESUMO

Microwave-mediated grafting of L-Arg onto naturally derived and stable multiradical poly(gallic acid) (PGAL) in aqueous media has been successfully achieved. This polymeric material has no adverse effect in human cells as there is no hemolytic activity upon MTT and Neutral Red assays. The analytical and computational characterization studies carried out in this study describe a helical molecular structure with random incorporation of L-Arginine pendant groups from PGAL's backbone. The antioxidant properties of the precursor polymer are preserved as proved by the elimination of stable DPPH and hydroxyl radical scavenging, as well as the FRAP and ORAC assays. Regarding the latter, the oxygen radical inhibition is enhanced compared to PGAL, which is attributed to the guanidyl moieties. PGAL-g-L-Arg displays antimicrobial activity against Gram (+) Listeria monocytogenes and Staphylococcus aureus strains with a MIC of 0.8 g/L and a bacteriostatic effect against Gram (-) Escherichia coli. Additionally, scanning electron and confocal fluorescence microscopies as well as crystal violet colorimetric assay demonstrate that the mechanism involved in the bacterial inhibition is related to the formation of porous channels on the membrane, which is discussed according to the helical secondary structure of the polymer and the amino acid guanidyl moieties interacting to bacterial membranes.


Assuntos
Antioxidantes , Ácido Gálico , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Arginina , Ácido Gálico/farmacologia , Humanos , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA