Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 26(3): e16597, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450872

RESUMO

Salinity is an increasing problem in coastal areas affected by saltwater intrusion, with deleterious effects on tree health and forest growth. Ectomycorrhizal (ECM) fungi may improve the salinity tolerance of host trees, but the impact of external potassium (K+ ) availability on these effects is still unclear. Here, we performed several experiments with the ECM fungus Paxillus ammoniavirescens and loblolly pine (Pinus taeda L.) in axenic and symbiotic conditions at limited or sufficient K+ and increasing sodium (Na+ ) concentrations. Growth rate, biomass, nutrient content, and K+ transporter expression levels were recorded for the fungus, and the colonization rate, root development parameters, biomass, and shoot nutrient accumulation were determined for mycorrhizal and non-mycorrhizal plants. P. ammoniavirescens was tolerant to high salinity, although growth and nutrient concentrations varied with K+ availability and increasing Na+ exposure. While loblolly pine root growth and development decreased with increasing salinity, ECM colonization was unaffected by pine response to salinity. The mycorrhizal influence on loblolly pine salinity response was strongly dependent on external K+ availability. This study reveals that P. ammoniavirescens can reduce Na+ accumulation of salt-exposed loblolly pine, but this effect depends on external K+ availability.


Assuntos
Basidiomycota , Micorrizas , Pinus taeda/genética , Salinidade , Potássio
2.
MethodsX ; 10: 102046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814690

RESUMO

Split-root techniques are valuable to investigate systemic vs. local plant responses to biotic and abiotic environmental factors, including interactions with soil microbes. Loblolly pine (Pinus taeda L.) is an economically important tree species that associates with many ectomycorrhizal fungi. However, a protocol for the establishment of split-roots experiments with loblolly pine has not been described so far. This method successfully establishes a split-root system in eight weeks following germination of loblolly pine seedlings. Rapid lateral root elongation is promoted by cutting the primary root tip and growing the seedlings in a hydroponic medium. Lateral roots can then be divided into two separated compartments and inoculated with ectomycorrhizal fungi. The method was validated by growth of split roots with or without inoculation. Root dry biomass was not significantly different between separated non-inoculated roots. Ectomycorrhizal colonization was not detected on the non-inoculated side of roots that were inoculated only on one side, demonstrating the success of the technique as a valuable method for split-root experiments in P. taeda. In addition to ectomycorrhizal fungi, researchers can use this method with loblolly pine to study systemic and local responses to a variety of other biotic or abiotic factors in the root environment.•We describe a protocol to produce split-roots in loblolly pine (Pinus taeda L.) in eight weeks.•This protocol uses hydroponics to promote the elongation of loblolly pine roots.•We validated this protocol by determining split-root biomass and inoculating the seedlings with the ectomycorrhizal fungi Paxillus ammoniavirescens or Hebeloma cylindrosporum.

3.
Trends Microbiol ; 31(5): 511-520, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36567187

RESUMO

Several families of potassium (K+) channels are found in membranes of all eukaryotes, underlining the importance of K+ uptake and redistribution within and between cells and organs. Among them, TOK (tandem-pore outward-rectifying K+) channels consist of eight transmembrane domains and two pore domains per subunit organized in dimers. These channels were originally studied in yeast, but recent identifications and characterizations in filamentous fungi shed new light on this fungus-specific K+ channel family. Although their actual function in vivo is often puzzling, recent works indicate a role in cellular K+ homeostasis and even suggest a role in plant-fungus symbioses. This review aims at synthesizing the current knowledge on fungal TOK channels and discussing their potential role in yeasts and filamentous fungi.


Assuntos
Canais de Potássio , Saccharomyces cerevisiae , Canais de Potássio/metabolismo , Transporte Biológico , Saccharomyces cerevisiae/metabolismo , Simbiose , Plantas/metabolismo
4.
J Exp Bot ; 73(5): 1288-1300, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34791191

RESUMO

Most land plants symbiotically interact with soil-borne fungi to ensure nutrient acquisition and tolerance to various environmental stressors. Among these symbioses, arbuscular mycorrhizal and ectomycorrhizal associations can be found in a large proportion of plants, including many crops. Split-root assays are widely used in plant research to study local and systemic signaling responses triggered by local treatments, including nutrient availability, interaction with soil microbes, or abiotic stresses. However, split-root approaches have only been occasionally used to tackle these questions with regard to mycorrhizal symbioses. This review compiles and discusses split-root assays developed to study arbuscular mycorrhizal and ectomycorrhizal symbioses, with a particular emphasis on colonization by multiple beneficial symbionts, systemic resistance induced by mycorrhizal fungi, water and nutrient transport from fungi to colonized plants, and host photosynthate allocation from the host to fungal symbionts. In addition, we highlight how the use of split-root assays could result in a better understanding of mycorrhizal symbioses, particularly for a broader range of essential nutrients, and for multipartite interactions.


Assuntos
Micorrizas , Micorrizas/fisiologia , Nitrogênio , Raízes de Plantas/microbiologia , Plantas/microbiologia , Solo , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...