Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 23(3): 406-413, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38168807

RESUMO

Nanostructured composite electrode materials play a major role in the fields of catalysis and electrochemistry. The self-assembly of metallic nanoparticles on oxide supports via metal exsolution relies on the transport of reducible dopants towards the perovskite surface to provide accessible catalytic centres at the solid-gas interface. At surfaces and interfaces, however, strong electrostatic gradients and space charges typically control the properties of oxides. Here we reveal that the nature of the surface-dopant interaction is the main determining factor for the exsolution kinetics of nickel in SrTi0.9Nb0.05Ni0.05O3-δ. The electrostatic interaction of dopants with surface space charge regions forming upon thermal oxidation results in strong surface passivation, which manifests in a retarded exsolution response. We furthermore demonstrate the controllability of the exsolution response via engineering of the perovskite surface chemistry. Our findings indicate that tailoring the electrostatic gradients at the perovskite surface is an essential step to improve exsolution-type materials in catalytic converters.

2.
Adv Mater ; 33(4): e2004132, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33263190

RESUMO

The ability to tailor oxide heterointerfaces has led to novel properties in low-dimensional oxide systems. A fundamental understanding of these properties is based on the concept of electronic charge transfer. However, the electronic properties of oxide heterointerfaces crucially depend on their ionic constitution and defect structure: ionic charges contribute to charge transfer and screening at oxide interfaces, triggering a thermodynamic balance of ionic and electronic structures. Quantitative understanding of the electronic and ionic roles regarding charge-transfer phenomena poses a central challenge. Here, the electronic and ionic structure is simultaneously investigated at the prototypical charge-transfer heterointerface, LaAlO3 /SrTiO3 . Applying in situ photoemission spectroscopy under oxygen ambient, ionic and electronic charge transfer is deconvoluted in response to the oxygen atmosphere at elevated temperatures. In this way, both the rich and variable chemistry of complex oxides and the associated electronic properties are equally embraced. The interfacial electron gas is depleted through an ionic rearrangement in the strontium cation sublattice when oxygen is applied, resulting in an inverse and reversible balance between cation vacancies and electrons, while the mobility of ionic species is found to be considerably enhanced as compared to the bulk. Triggered by these ionic phenomena, the electronic transport and magnetic signature of the heterointerface are significantly altered.

3.
Inorg Chem ; 58(15): 10408-10416, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31290653

RESUMO

New heteroleptic rhenium(I) compounds, [fac-Re(I)(CO)3(L)] (e.g., L= tfb-dmpda, (N,N-(4,4,4-trifluorobut-1-en-3-on)-dimethyl propylene diamine)), containing anionic and neutral ligands act as efficient precursors to grow polycrystalline rhenium nitride (ReN) films by their vapor phase deposition at 600 °C. Deposition of ReN films under an external magnetic field showed an orientation effect with preferred growth of crystallites along ⟨100⟩ direction. Rhenium complexes reported here unify high stability and reactivity in a single molecule through a Janus-type coordination around a Re center, constituted by a chelating tridentate ligand and three carbonyl groups imparting a facial geometry. Single-crystal diffraction analysis confirmed the structural integrity of the new rhenium compounds. The rigidity of molecular framework was validated in solution via 1D and 2D NMR spectroscopy, in the gas phase via mass spectrometry, and in the solid-state by thermogravimetric analysis and differential scanning calorimetry studies. The analytical data showed that pre-existent Re-N bonds in [fac-Re(I)(CO)3(L)] facilitated low-temperature formation of crystalline ReN deposits confirmed by grazing angle X-ray diffraction analysis. The surface chemical composition and the uniformity of microstructure were provided by X-ray photoelectron spectroscopy (XPS) and scanning and transmission electron microscopy (SEM/TEM), respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...