Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 3(12): 8352-8360, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35019607

RESUMO

Bioprosthetic valves (BPVs) have a limited lifespan in the body necessitating repeated surgeries to replace the failed implant. Early failure of these implants has been linked to various surface properties of the valve. Surface properties of BPVs are significantly different from physiological valves because of the fixation process used when processing the xenograft tissue. To improve the longevity of BPVs, efforts need to be taken to improve the surface properties and shield the implant from the bodily interactions that degrade it. Toward this goal, we evaluated the use of hydrogel coatings to attach to the BPV tissue and impart surface properties that are close to physiological. Hydrogels are well characterized for their biocompatibility and highly tunable surface characteristics. Using a previously published coating method, we deposited hydrogel coatings of poly(ethylene glycol)diacrylate (PEGDA) and poly(ethylene glycol)diacrylamide (PEGDAA) atop BPV samples. Coated samples were evaluated against the physiological tissue and uncoated glutaraldehyde-fixed tissue for deposition of hydrogel, surface adherence, mechanical properties, and fixation properties. Results showed both PEGDA- and PEGDAA-deposited coatings were nearly continuous across the valve leaflet surface. Further, the PEGDA- and PEGDAA-coated samples showed restoration of physiological levels of protein adhesion and mechanical stiffness. Interestingly, the coating process rather than the coating itself altered the material behavior yet did not alter the cross-linking from fixation. These results show that the PEG-based coatings for BPVs can successfully alter surface properties of BPVs and help promote physiological characteristics without interfering with the necessary fixation.

2.
ACS Appl Bio Mater ; 3(3): 1321-1330, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35021626

RESUMO

Bioprosthetic heart valve implants are beset by calcification and failure due to the interactions between the body and the transplant. Hydrogels can be used as biological blank slates that may help to shield implants from these interactions; however, traditional light-based hydrogel polymerization is impeded by tissue opacity and topography. Therefore, new methods must be created to bind hydrogel to implant tissues. To address these complications, a two-step surface-coating method for bioprosthetic valves was developed. A previously developed bioprosthetic valve model (VM) was used to investigate and optimize the coating method. Generally, this coating is achieved by first reacting surface amine groups with an NHS-PEG-acrylate while also allowing glucose to absorb into the bulk. Then, glucose oxidase, poly(ethylene glycol) diacrylate (PEGDA), and iron ions are added to the system to initiate free-radical polymerization that bonds the PEGDA hydrogel to the acrylates sites on the surface. Results showed a thin (∼8 µm), continuous coating on VM samples that is capable of repelling protein adhesion (2% surface fouling versus 20% on uncoated samples) and does not significantly affect the surface mechanical properties. Based on this success, the coating method was translated to glutaraldehyde-fixed valve tissue samples. Results showed noncontinuous but evident coating on the surface, which was further improved by adjusting the coating solution. These results demonstrate the feasibility of the proposed two-step surface coating method for modifying the surface of bioprosthetic valve replacements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA