Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 16960, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216864

RESUMO

Quantum two-level systems (TLSs) intrinsic to glasses induce decoherence in many modern quantum devices, such as superconducting qubits. Although the low-temperature physics of these TLSs is usually well-explained by a phenomenological standard tunneling model of independent TLSs, the nature of these TLSs, as well as their behavior out of equilibrium and at high energies above 1 K, remain inconclusive. Here we measure the non-equilibrium dielectric loss of TLSs in amorphous silicon using a superconducting resonator, where energies of TLSs are varied in time using a swept electric field. Our results show the existence of two distinct ensembles of TLSs, interacting weakly and strongly with phonons, where the latter also possesses anomalously large electric dipole moment. These results may shed new light on the low temperature characteristics of amorphous solids, and hold implications to experiments and applications in quantum devices using time-varying electric fields.

2.
Phys Rev Lett ; 125(17): 170502, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33156670

RESUMO

We present an efficient approach to achieving arbitrary, high-fidelity control of a multilevel quantum system using optimal control techniques. As an demonstration, we implement a continuous, software-defined microwave pulse to realize a 0↔2 SWAP gate that achieves an average gate fidelity of 99.4%. We describe our procedure for extracting the system Hamiltonian, calibrating the quantum and classical hardware chain, and evaluating the gate fidelity. Our work represents an alternative, fully generalizable route towards achieving universal quantum control by leveraging optimal control techniques.

3.
Phys Rev Lett ; 116(16): 163601, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27152801

RESUMO

We demonstrate a laser using material defects known for deleterious microwave absorption in quantum computing. These defects are two-level atomic tunneling systems (TSs), which are manipulated using a uniform swept dc electric field and two ac pump fields. The swept field changes the TS energies. TSs first pass through degeneracy with pump photons, which invert (excite) them with a high probability using rapid adiabatic passage. Population inversion is accomplished in spite of a broad distribution of TS parameters. Afterwards the TSs are brought to degeneracy with the resonator where they emit photons. The emission is found to be dependent on individual cavity-TS interactions, and the narrowing linewidth at increasing photon occupancy indicates stimulated emission. Characterization with a microwave probe shows a transition from ordinary defect loss to negligible microwave absorption, and ultimately to coherent amplification. Thus, instead of absorbing microwave energy, the TSs can be tuned to reduce loss and even amplify signals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...