Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Sci (Paris) ; 38(3): 274-279, 2022 Mar.
Artigo em Francês | MEDLINE | ID: mdl-35333164

RESUMO

Endometriosis is a chronic disease in which lesions resembling endometrial tissue are found outside the uterus, mainly in the pelvis or abdomen. It may affect 10% of women of childbearing age. It is the cause of a significant alteration in quality of life and a major cost to the health system. Few research teams are working on this subject, and its pathophysiology is still poorly understood. This article proposes avenues of reflection for research on endometriosis in France, notably based on the mobilization of related scientific communities (involved in cancer, development, epigenetics, and neurosciences research studies).


Title: Des pistes de réflexion pour la recherche sur l'endométriose en France. Abstract: L'endométriose est une maladie chronique dans laquelle des lésions ressemblant à du tissu endométrial se retrouvent hors de l'utérus, principalement dans la cavité abdomino-pelvienne. Cette maladie pourrait toucher 10 % des femmes en âge de procréer. Elle est à l'origine d'une importante altération de la qualité de vie et d'un coût majeur pour le système de santé. Peu d'équipes de recherche sont mobilisées sur ce sujet, et la physiopathologie de la maladie reste mal comprise. Nous proposons dans cet article des pistes de réflexion pour la recherche sur l'endométriose en France, fondées notamment sur la mobilisation de communautés scientifiques connexes (notamment celles impliquées dans la recherche sur le cancer, la biologie du développement, l'épigénétique, les neurosciences).


Assuntos
Endometriose , Endometriose/genética , Endometriose/patologia , Endométrio/patologia , Endométrio/fisiologia , Epigênese Genética , Feminino , Humanos , Qualidade de Vida , Útero
2.
Gut ; 67(12): 2192-2203, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29074727

RESUMO

OBJECTIVE: The AAA+ ATPase Reptin is overexpressed in hepatocellular carcinoma and preclinical studies indicate that it could be a relevant therapeutic target. However, its physiological and pathophysiological roles in vivo remain unknown. This study aimed to determine the role of Reptin in mammalian adult liver. DESIGN AND RESULTS: We generated an inducible liver-specific Reptin knockout (RepinLKO ) mouse model. Following Reptin invalidation, mice displayed decreased body and fat mass, hypoglycaemia and hypolipidaemia. This was associated with decreased hepatic mTOR protein abundance. Further experiments in primary hepatocytes demonstrated that Reptin maintains mTOR protein level through its ATPase activity. Unexpectedly, loss or inhibition of Reptin induced an opposite effect on mTORC1 and mTORC2 signalling, with: (1) strong inhibition of hepatic mTORC1 activity, likely responsible for the reduction of hepatocytes cell size, for decreased de novo lipogenesis and cholesterol transcriptional programmes and (2) enhancement of mTORC2 activity associated with inhibition of the gluconeogenesis transcriptional programme and hepatic glucose production. Consequently, the role of hepatic Reptin in the pathogenesis of insulin resistance (IR) and non-alcoholic fatty liver disease consecutive to a high-fat diet was investigated. We found that Reptin deletion completely rescued pathological phenotypes associated with IR, including glucose intolerance, hyperglycaemia, hyperlipidaemia and hepatic steatosis. CONCLUSION: We show here that the AAA +ATPase Reptin is a regulator of mTOR signalling in the liver and global glucido-lipidic homeostasis. Inhibition of hepatic Reptin expression or activity represents a new therapeutic perspective for metabolic syndrome.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/fisiologia , DNA Helicases/fisiologia , Glucose/metabolismo , Metabolismo dos Lipídeos/fisiologia , Adenosina Trifosfatases/fisiologia , Animais , Peso Corporal/fisiologia , DNA Helicases/deficiência , DNA Helicases/genética , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Metabolismo Energético/fisiologia , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/prevenção & controle , Intolerância à Glucose/fisiopatologia , Intolerância à Glucose/prevenção & controle , Hepatócitos/metabolismo , Resistência à Insulina/fisiologia , Lipogênese/fisiologia , Fígado/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos Knockout , Transdução de Sinais/fisiologia
3.
Geroscience ; 39(5-6): 499-550, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29270905

RESUMO

A paradox is a seemingly absurd or impossible concept, proposition, or theory that is often difficult to understand or explain, sometimes apparently self-contradictory, and yet ultimately correct or true. How is it possible, for example, that oxygen "a toxic environmental poison" could be also indispensable for life (Beckman and Ames Physiol Rev 78(2):547-81, 1998; Stadtman and Berlett Chem Res Toxicol 10(5):485-94, 1997)?: the so-called Oxygen Paradox (Davies and Ursini 1995; Davies Biochem Soc Symp 61:1-31, 1995). How can French people apparently disregard the rule that high dietary intakes of cholesterol and saturated fats (e.g., cheese and paté) will result in an early death from cardiovascular diseases (Renaud and de Lorgeril Lancet 339(8808):1523-6, 1992; Catalgol et al. Front Pharmacol 3:141, 2012; Eisenberg et al. Nat Med 22(12):1428-1438, 2016)?: the so-called, French Paradox. Doubtless, the truth is not a duality and epistemological bias probably generates apparently self-contradictory conclusions. Perhaps nowhere in biology are there so many apparently contradictory views, and even experimental results, affecting human physiology and pathology as in the fields of free radicals and oxidative stress, antioxidants, foods and drinks, and dietary recommendations; this is particularly true when issues such as disease-susceptibility or avoidance, "healthspan," "lifespan," and ageing are involved. Consider, for example, the apparently paradoxical observation that treatment with low doses of a substance that is toxic at high concentrations may actually induce transient adaptations that protect against a subsequent exposure to the same (or similar) toxin. This particular paradox is now mechanistically explained as "Adaptive Homeostasis" (Davies Mol Asp Med 49:1-7, 2016; Pomatto et al. 2017a; Lomeli et al. Clin Sci (Lond) 131(21):2573-2599, 2017; Pomatto and Davies 2017); the non-damaging process by which an apparent toxicant can activate biological signal transduction pathways to increase expression of protective genes, by mechanisms that are completely different from those by which the same agent induces toxicity at high concentrations. In this review, we explore the influences and effects of paradoxes such as the Oxygen Paradox and the French Paradox on the etiology, progression, and outcomes of many of the major human age-related diseases, as well as the basic biological phenomenon of ageing itself.


Assuntos
Adaptação Fisiológica , Envelhecimento/genética , Dieta Rica em Proteínas/estatística & dados numéricos , Hipercolesterolemia/epidemiologia , Estresse Oxidativo/fisiologia , Oxigênio/metabolismo , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Feminino , França , Radicais Livres/metabolismo , Avaliação Geriátrica , Humanos , Masculino , Pessoa de Meia-Idade , Medição de Risco
4.
Cell Biochem Funct ; 35(6): 289-295, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28833338

RESUMO

Hepatocellular carcinoma (HCC) is the main primary cancer of the liver. Many studies have shown that insulin resistance is a risk factor for HCC. We previously discovered the overexpression and oncogenic role of the Reptin/RUVBL2 ATPase in HCC. Here, we found that Reptin silencing enhanced insulin sensitivity in 2 HCC cell lines, as shown by a large potentiation of insulin-induced AKT phosphorylation on Ser473 and Thr308, and of downstream signalling. Reptin silencing did not affect the tyrosine phosphorylation of the insulin receptor nor of IRS1, but it enhanced the tyrosine phosphorylation of the p85 subunit of PI3K. The expression of the SHP-1/PTPN6 phosphatase, which dephosphorylates p85, was reduced after Reptin depletion. Forced expression of SHP-1 restored a normal AKT phosphorylation after insulin treatment in cells where Reptin was silenced, demonstrating that the downregulation of SHP1 is mechanistically linked to increased Akt phosphorylation. In conclusion, we have uncovered a new function for Reptin in regulating insulin signalling in HCC cells via the regulation of SHP-1 expression. We suggest that the regulation of insulin sensitivity by Reptin contributes to its oncogenic action in the liver.


Assuntos
Proteínas de Transporte/metabolismo , DNA Helicases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Linhagem Celular Tumoral , DNA Helicases/antagonistas & inibidores , DNA Helicases/genética , Doxiciclina/farmacologia , Humanos , Insulina/farmacologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Fosforilação/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Oncotarget ; 8(5): 7839-7851, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-27999200

RESUMO

Hepatocellular carcinoma is associated with a high rate of intra-hepatic invasion that carries a poor prognosis. Meprin alpha (Mep1A) is a secreted metalloproteinase with many substrates relevant to cancer invasion. We found that Mep1A was a target of Reptin, a protein that is oncogenic in HCC. We studied Mep1A regulation by Reptin, its role in HCC, and whether it mediates Reptin oncogenic effects.MepA and Reptin expression was measured in human HCC by qRT-PCR and in cultured cells by PCR, western blot and enzymatic activity measurements. Cell growth was assessed by counting and MTS assay. Cell migration was measured in Boyden chambers and wound healing assays, and cell invasion in Boyden chambers.Silencing Reptin decreased Mep1A expression and activity, without affecting meprin ß. Mep1A, but not meprin ß, was overexpressed in a series of 242 human HCC (2.04 fold, p < 0.0001), and a high expression correlated with a poor prognosis. Mep1A and Reptin expressions were positively correlated (r = 0.39, p < 0.0001). Silencing Mep1A had little effect on cell proliferation, but decreased cell migration and invasion of HuH7 and Hep3B cells. Conversely, overexpression of Mep1A or addition of recombinant Mep1A increased migration and invasion. Finally, overexpression of Mep1A restored a normal cell migration in cells where Reptin was depleted.Mep1A is overexpressed in most HCC and induces HCC cell migration and invasion. Mep1A expression is regulated by Reptin, and Mep1A mediates Reptin-induced migration. Overall, we suggest that Mep1A may be a useful target in HCC.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Carcinoma Hepatocelular/enzimologia , Proteínas de Transporte/metabolismo , Movimento Celular , DNA Helicases/metabolismo , Neoplasias Hepáticas/enzimologia , Metaloendopeptidases/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proliferação de Células , DNA Helicases/genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Metaloendopeptidases/genética , Invasividade Neoplásica , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção
6.
Front Mol Biosci ; 2: 17, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25988184

RESUMO

Pontin and Reptin are related partner proteins belonging to the AAA+ (ATPases Associated with various cellular Activities) family. They are implicated in multiple and seemingly unrelated processes encompassing the regulation of gene transcription, the remodeling of chromatin, DNA damage sensing and repair, and the assembly of protein and ribonucleoprotein complexes, among others. The 2nd International Workshop on Pontin and Reptin took place at the Instituto de Tecnologia Química e Biológica António Xavier in Oeiras, Portugal on October 10-12, 2014, and reported significant new advances on the mechanisms of action of these two AAA+ ATPases. The major points under discussion were related to the mechanisms through which these proteins regulate gene transcription, their roles as co-chaperones, and their involvement in pathophysiology, especially in cancer and ciliary biology and disease. Finally, they may become anticancer drug targets since small chemical inhibitors were shown to produce anti-tumor effects in animal models.

7.
PLoS One ; 10(4): e0123333, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25875766

RESUMO

Reptin/RUVBL2 is overexpressed in most hepatocellular carcinomas and is required for the growth and viability of HCC cells. Reptin is involved in several chromatin remodeling complexes, some of which are involved in the detection and repair of DNA damage, but data on Reptin involvement in the repair of DNA damage are scarce and contradictory. Our objective was to study the effects of Reptin silencing on the repair of DNA double-strand breaks (DSB) in HCC cells. Treatment of HuH7 cells with etoposide (25 µM, 30 min) or γ irradiation (4 Gy) increased the phosphorylation of H2AX by 1.94 ± 0.13 and 2.0 ± 0.02 fold, respectively. These values were significantly reduced by 35 and 65 % after Reptin silencing with inducible shRNA. Irradiation increased the number of BRCA1 (3-fold) and 53BP1 foci (7.5 fold). Depletion of Reptin reduced these values by 62 and 48%, respectively. These defects in activation and/or recruitment of repair proteins were not due to a decreased number of DSBs as measured by the COMET assay. All these results were confirmed in the Hep3B cell line. Protein expression of ATM and DNA-PKcs, the major H2AX kinases, was significantly reduced by 52 and 61 % after Reptin depletion whereas their mRNA level remained unchanged. Phosphorylation of Chk2, another ATM target, was not significantly altered. Using co-immunoprecipitation, we showed an interaction between Reptin and DNA-PKcs. The half-life of newly-synthesized DNA-PKcs was reduced when Reptin was silenced. Finally, depletion of Reptin was synergistic with etoposide or γ irradiation to reduce cell growth and colony formation. In conclusion, Reptin is an important cofactor for the repair of DSBs. Our data, combined with those of the literature suggests that it operates at least in part by regulating the expression of DNA-PKcs by a stabilization mechanism. Overexpression of Reptin in HCC could be a factor of resistance to treatment, consistent with the observed overexpression of Reptin in subgroups of chemo-resistant breast and ovarian cancers.


Assuntos
Proteínas de Transporte/genética , Quebras de DNA de Cadeia Dupla , DNA Helicases/genética , Reparo do DNA/genética , Interferência de RNA , ATPases Associadas a Diversas Atividades Celulares , Antineoplásicos Fitogênicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Western Blotting , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Proliferação de Células/efeitos da radiação , Ensaio Cometa , DNA Helicases/metabolismo , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Etoposídeo/farmacologia , Raios gama , Histonas/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Microscopia Confocal , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
EMBO Rep ; 16(3): 332-40, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25652260

RESUMO

The accumulation of misfolded proteins in the endoplasmic reticulum (ER) activates the Unfolded Protein Response (UPR(ER)) to restore ER homeostasis. The AAA(+) ATPase p97/CDC-48 plays key roles in ER stress by promoting both ER protein degradation and transcription of UPR(ER) genes. Although the mechanisms associated with protein degradation are now well established, the molecular events involved in the regulation of gene transcription by p97/CDC-48 remain unclear. Using a reporter-based genome-wide RNAi screen in combination with quantitative proteomic analysis in Caenorhabditis elegans, we have identified RUVB-2, a AAA(+) ATPase, as a novel repressor of a subset of UPR(ER) genes. We show that degradation of RUVB-2 by CDC-48 enhances expression of ER stress response genes through an XBP1-dependent mechanism. The functional interplay between CDC-48 and RUVB-2 in controlling transcription of select UPR(ER) genes appears conserved in human cells. Together, these results describe a novel role for p97/CDC-48, whereby its role in protein degradation is integrated with its role in regulating expression of ER stress response genes.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Ciclo Celular/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Transdução de Sinais/genética , Transcrição Gênica/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Adenosina Trifosfatases/genética , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Estresse do Retículo Endoplasmático/genética , Proteômica/métodos , Interferência de RNA , Proteínas Repressoras/metabolismo , Proteína com Valosina
9.
J Cell Biol ; 207(4): 517-33, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25422375

RESUMO

Accumulation of type I collagen fibrils in tumors is associated with an increased risk of metastasis. Invadosomes are F-actin structures able to degrade the extracellular matrix. We previously found that collagen I fibrils induced the formation of peculiar linear invadosomes in an unexpected integrin-independent manner. Here, we show that Discoidin Domain Receptor 1 (DDR1), a collagen receptor overexpressed in cancer, colocalizes with linear invadosomes in tumor cells and is required for their formation and matrix degradation ability. Unexpectedly, DDR1 kinase activity is not required for invadosome formation or activity, nor is Src tyrosine kinase. We show that the RhoGTPase Cdc42 is activated on collagen in a DDR1-dependent manner. Cdc42 and its specific guanine nucleotide-exchange factor (GEF), Tuba, localize to linear invadosomes, and both are required for linear invadosome formation. Finally, DDR1 depletion blocked cell invasion in a collagen gel. Altogether, our data uncover an important role for DDR1, acting through Tuba and Cdc42, in proteolysis-based cell invasion in a collagen-rich environment.


Assuntos
Colágeno Tipo I/metabolismo , Proteínas do Citoesqueleto/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Citoesqueleto de Actina , Actinas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Linhagem Celular Tumoral , Colagenases/metabolismo , Dipeptídeos/farmacologia , Receptor com Domínio Discoidina 1 , Matriz Extracelular/metabolismo , Humanos , Inibidores de Metaloproteinases de Matriz/farmacologia , Invasividade Neoplásica/genética , Interferência de RNA , RNA Interferente Pequeno , Receptores Proteína Tirosina Quinases/genética
10.
Mol Cell Proteomics ; 13(12): 3473-83, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25225353

RESUMO

Proteomics-based clinical studies represent promising resources for the discovery of novel biomarkers or for unraveling molecular mechanisms underlying particular diseases. Here, we present a discovery study of hepatocellular carcinoma developed on nonfibrotic liver (nfHCC) that combines complementary quantitative iTRAQ-based proteomics and phosphoproteomics approaches. Using both approaches, we compared a set of 24 samples (18 nfHCC versus six nontumor liver tissue). We identified 43 proteins (67 peptides) differentially expressed and 32 peptides differentially phosphorylated between the experimental groups. The functional analysis of the two data sets pointed toward the deregulation of a protein homeostasis (proteostasis) network including the up-regulation of the Endoplasmic Reticulum (ER) resident HSPA5, HSP90B1, PDIA6, and P4HB and of the cytosolic HSPA1B, HSP90AA1, HSPA9, UBC, CNDP2, TXN, and VCP as well as the increased phosphorylation of the ER resident calnexin at Ser583. Antibody-based validation approaches (immunohistochemistry, immunoblot, Alphascreen(®), and AMMP(®)) on independent nfHCC tumor sets (up to 77 samples) confirmed these observations, thereby indicating a common mechanism occurring in nfHCC tumors. Based on these results we propose that adaptation to proteostasis imbalance in nfHCC tumors might confer selective advantages to those tumors. As such, this model could provide an additional therapeutic opportunity for those tumors arising on normal liver by targeting the tumor proteostasis network. Data are available via ProteomeXchange with identifier PXD001253.


Assuntos
Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Cirrose Hepática/genética , Neoplasias Hepáticas/genética , Proteínas de Neoplasias/genética , Fosfoproteínas/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Idoso , Idoso de 80 Anos ou mais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Calnexina/genética , Calnexina/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Dipeptidases/genética , Dipeptidases/metabolismo , Chaperona BiP do Retículo Endoplasmático , Feminino , Perfilação da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Pessoa de Meia-Idade , Anotação de Sequência Molecular , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Pró-Colágeno-Prolina Dioxigenase/genética , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteômica/métodos , Transdução de Sinais , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Proteína com Valosina
11.
Bioorg Med Chem Lett ; 24(11): 2512-6, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24767849

RESUMO

A virtual screening strategy, through molecular docking, for the elaboration of an electronic library of Pontin inhibitors has resulted in the identification of two original scaffolds. The chemical synthesis of four candidates allowed extensive biological evaluations for their anticancer activity. Two compounds displayed an effect on Pontin ATPase activity, and one of them also exhibited a noticeable effect on cell growth. Further biological studies revealed that the most active compound induced apoptotic cell death together with necrosis, this latter effect being likely related to the cellular balance of ATP regulation.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Transporte/antagonistas & inibidores , DNA Helicases/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , ATPases Associadas a Diversas Atividades Celulares , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Proliferação de Células/efeitos dos fármacos , DNA Helicases/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Células HCT116 , Células HL-60 , Humanos , Células KB , Células MCF-7 , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
12.
Cancer Res ; 73(15): 4732-43, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23752693

RESUMO

Growing evidence supports a role for the unfolded protein response (UPR) in carcinogenesis; however, the precise molecular mechanisms underlying this phenomenon remain elusive. Herein, we identified the circadian clock PER1 mRNA as a novel substrate of the endoribonuclease activity of the UPR sensor IRE1α. Analysis of the mechanism shows that IRE1α endoribonuclease activity decreased PER1 mRNA in tumor cells without affecting PER1 gene transcription. Inhibition of IRE1α signaling using either siRNA-mediated silencing or a dominant-negative strategy prevented PER1 mRNA decay, reduced tumorigenesis, and increased survival, features that were reversed upon PER1 silencing. Clinically, patients showing reduced survival have lower levels of PER1 mRNA expression and increased splicing of XBP1, a known IRE-α substrate, thereby pointing toward an increased IRE1α activity in these patients. Hence, we describe a novel mechanism connecting the UPR and circadian clock components in tumor cells, thereby highlighting the importance of this interplay in tumor development.


Assuntos
Endorribonucleases/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioblastoma/metabolismo , Proteínas Circadianas Period/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Animais , Sequência de Bases , Endorribonucleases/genética , Glioblastoma/genética , Humanos , Camundongos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Circadianas Period/genética , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Processamento Pós-Transcricional do RNA , RNA Mensageiro , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Sci Signal ; 6(266): mr1, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23482663

RESUMO

Pontin (also known as RUVBL1 and RVB1) and Reptin (also called RUVBL2 and RVB2) are related members of the large AAA+ (adenosine triphosphatase associated with diverse cellular activities) superfamily of conserved proteins. Various cellular functions depend on Pontin and Reptin, mostly because of their functions in the assembly of protein complexes that play a role in the regulation of cellular energetic metabolism, transcription, chromatin remodeling, and the DNA damage response. Little is known, though, about the interconnections between these multiple functions, how the relevant signaling pathways are regulated, whether the interconnections are affected in human disease, and whether components of these pathways are suitable targets for therapeutic intervention. The First International Workshop on Pontin (RUVBL1) and Reptin (RUVBL2), held between 16 and 19 October 2012, discussed the nature of the oligomeric organization of these proteins, their structures, their roles as partners in various protein complexes, and their involvement in cellular regulation, signaling, and pathophysiology, as well as their potential for therapeutic targeting. A major outcome of the meeting was a general consensus that most functions of Pontin and Reptin are related to their roles as chaperones or adaptor proteins that are important for the assembly and function of large signaling protein complexes.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , DNA Helicases/metabolismo , Transdução de Sinais , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/química , Proteínas de Transporte/química , Montagem e Desmontagem da Cromatina , DNA Helicases/química , Humanos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Transcrição Gênica
14.
Helicobacter ; 18(1): 33-40, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23067369

RESUMO

BACKGROUND: The heterogeneity of hepatitis C virus (HCV) infection cannot always be explained by HCV genotypes or host genetic factors, raising the issue of possible cofactors. A new form of hepatitis leading to liver cancer was discovered in 1992 in mice, owing to an infection by Helicobacter hepaticus. Moreover, several studies showed an association between the presence of HCV and Helicobacter in the liver of patients with severe liver diseases suggesting a possible synergism between the two pathogens. In an HCV transgenic mouse model with a B6C3F1 background, the combination of H. hepaticus infection and the HCV transgene resulted in a significantly greater incidence and multiplicity of preneoplastic and neoplastic liver foci in males. OBJECTIVES: Because the mouse genetic background is a major determinant in the development of liver disease, our aim was to test the synergism between HCV and H. hepaticus infection using transgenic mice with a more sensitive genetic background to H. hepaticus infection. METHODS: For this purpose, four groups of mice were followed up to 14 months, the presence of H. hepaticus was monitored by PCR and hepatic lesions were looked for. RESULTS: We found that H. hepaticus, but not the HCV transgene, increased the number of hepatic lesions. The presence of carcinoma was more likely to occur on a background of hepatitis, and the overall lesions were more frequent in the presence of steatosis. The effect of the mouse genetic background was greater than the effect of the HCV transgene and was sufficient to promote lesions particularly via its sensitivity to H. hepaticus infection. CONCLUSIONS: Genetic susceptibility may be a more important factor than expected. Indeed, the synergism between HCV and H. hepaticus infection involved in liver disease may be highly host dependent.


Assuntos
Infecções por Helicobacter/patologia , Helicobacter hepaticus/patogenicidade , Hepacivirus/patogenicidade , Hepatite C/patologia , Fígado/patologia , Animais , Coinfecção/microbiologia , Coinfecção/patologia , Coinfecção/virologia , Modelos Animais de Doenças , Seguimentos , Infecções por Helicobacter/complicações , Infecções por Helicobacter/microbiologia , Hepatite C/complicações , Hepatite C/virologia , Masculino , Camundongos , Camundongos Transgênicos
15.
Biol Cell ; 105(1): 46-57, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23106484

RESUMO

BACKGROUND INFORMATION: Podosomes are actin-based structures involved in cell adhesion, migration, invasion and extracellular matrix degradation. They have been described in large vessel endothelial cells, but nothing is known concerning microvascular endothelial cells. Here, we focussed on liver sinusoidal endothelial cells (LSECs), fenestrated microvascular cells that play major roles in liver physiology. Liver fibrosis induces a dedifferentiation of LSECs leading notably to a loss of fenestrae. Because liver fibrosis is associated with increased matrix stiffness, and because substrate stiffness is known to regulate the actin cytoskeleton, we investigated the impact of matrix rigidity on podosome structures in LSECs. RESULTS: Using primary LSECs, we demonstrated that microvascular endothelial cells are able to form constitutive podosomes. Podosome presence in LSECs was independent of cytokines such as transforming growth factor-ß or vascular endothelial growth factor, but could be modulated by matrix stiffness. As expected, LSECs lost their differentiated phenotype during cell culture, which was paralleled by a loss of podosomes. LSECs however retained the capacity to form active podosomes following detachment/reseeding or actin-destabilising drug treatments. Finally, constitutive podosomes were also found in primary microvascular endothelial cells from other organs. CONCLUSIONS: Our results show that microvascular endothelial cells are able to form podosomes without specific stimulation. Our data suggest that the major determinant of podosome induction in these cells is substrate rigidity.


Assuntos
Citoesqueleto de Actina/metabolismo , Células Endoteliais/citologia , Matriz Extracelular/metabolismo , Fígado/metabolismo , Microvasos/metabolismo , Transdução de Sinais/fisiologia , Adesão Celular/fisiologia , Humanos , Fígado/irrigação sanguínea , Fator de Crescimento Transformador beta/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Biochem J ; 450(1): 55-62, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23181668

RESUMO

RhoGTPases are GDP/GTP molecular switches that control a wide variety of cellular processes, thereby contributing to many diseases, including cancer. As a consequence, there is great interest in the identification of small-molecule inhibitors of RhoGTPases. In the present paper, using the property of GTP-loaded RhoGTPases to bind to their effectors, we describe a miniaturized and robust assay to monitor Rac1 GTPase activation that is suitable for large-scale high-throughput screening. A pilot compound library screen revealed that the topoisomerase II poison MTX (mitoxantrone) is an inhibitor of Rac1, and also inhibits RhoA and Cdc42 in vitro. We show that MTX prevents GTP binding to RhoA/Rac1/Cdc42 in vitro. Furthermore, MTX strongly inhibits RhoGTPase-mediated F-actin (filamentous actin) reorganization and cell migration. Hence, we report a novel biochemical assay yielding the identification of RhoGTPase inhibitors and we present a proof-of-concept validation with the identification of MTX as a novel pan-RhoGTPase inhibitor.


Assuntos
Mitoxantrona/farmacologia , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Animais , Movimento Celular , Células Endoteliais/fisiologia , Ensaios de Triagem em Larga Escala , Humanos , Transdução de Sinais , Suínos , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/metabolismo
17.
Mol Cancer Res ; 11(2): 133-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23233483

RESUMO

Reptin is overexpressed in most human hepatocellular carcinomas. Reptin is involved in chromatin remodeling, transcription regulation, or supramolecular complexes assembly. Its silencing leads to growth arrest and apoptosis in cultured hepatocellular carcinoma cells and stops hepatocellular carcinoma progression in xenografts. Reptin has an ATPase activity linked to Walker A and B domains. It is unclear whether every Reptin function depends on its ATPase activity. Here, we expressed Walker B ATPase-dead mutants (D299N or E300G) in hepatocellular carcinoma cells in the presence of endogenous Reptin. Then, we silenced endogenous Reptin and substituted it with siRNA-resistant wild-type (WT) or Flag-Reptin mutants. There was a significant decrease in cell growth when expressing either mutant in the presence of endogenous Reptin, revealing a dominant negative effect of the ATPase dead mutants on hepatocellular carcinoma cell growth. Substitution of endogenous Reptin by WT Flag-Reptin rescued cell growth of HuH7. On the other hand, substitution by Flag-Reptin D299N or E300G led to cell growth arrest. Similar results were seen with Hep3B cells. Reptin silencing in HuH7 cells led to an increased apoptotic cell death, which was prevented by WT Flag-Reptin but not by the D299N mutant. These data show that Reptin functions relevant for cancer are dependent on its ATPase activity, and suggest that antagonists of Reptin ATPase activity may be useful as anticancer agents.


Assuntos
Carcinoma Hepatocelular/enzimologia , Proteínas de Transporte/metabolismo , DNA Helicases/metabolismo , Neoplasias Hepáticas/enzimologia , ATPases Associadas a Diversas Atividades Celulares , Apoptose/fisiologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , DNA Helicases/biossíntese , DNA Helicases/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Mutação , Transfecção
18.
Mol Cancer Ther ; 11(12): 2610-20, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23041544

RESUMO

The molecular mechanisms and cellular targets of sorafenib, a multikinase inhibitor used for the treatment of hepatocellular carcinoma (HCC), remain to be fully characterized. Recent studies have shown that sorafenib induces tumor cell death through the activation of endoplasmic reticulum stress signaling and/or autophagy in various cellular models. Using liver cancer-derived cell lines, we specifically show that the IRE1 and phosphorylated extracellular signal-regulated kinase arms of the unfolded protein response (UPR) become activated upon sorafenib treatment, whereas the ATF6 arm is inhibited. Our results also reveal that sorafenib treatment causes disruption to the secretory pathway, as witnessed by the fragmentation of the Golgi apparatus and the induction of autophagy. On the basis of these observations, we tested the relevance of the AAA⁺ ATPase p97/VCP as a potential functional target of sorafenib. Our results show that p97/VCP tyrosine phosphorylation is prevented upon sorafenib treatment, and that this can be correlated with enhanced membrane association. Moreover, we show that DBeQ, a recently discovered inhibitor of p97/VCP, enhances sorafenib-mediated toxicity in cultured cells. Our data show a novel mechanism for sorafenib-mediated cell death in HCC, which depends on the integrity of the secretory pathway; and we identify p97/VCP phosphorylation as a potential target for improved sorafenib treatment efficacy in patients.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Carcinoma Hepatocelular/tratamento farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Niacinamida/análogos & derivados , Compostos de Fenilureia/farmacologia , Adenosina Trifosfatases/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Terapia de Alvo Molecular , Niacinamida/farmacologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Via Secretória/efeitos dos fármacos , Sorafenibe
19.
Hepatology ; 56(2): 781-3, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22833250
20.
J Chromatogr B Analyt Technol Biomed Life Sci ; 891-892: 109-12, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22406350

RESUMO

Automated phosphopeptide enrichment prior to MS analysis by means of Immobilized Metal Affinity Chromatography (IMAC) and Metal Oxide Affinity Chromatography (MOAC) has been probed with packed columns. We compared POROS-Fe³âº and TiO2 (respectively IMAC and MOAC media), using a simple mixture of peptides from casein-albumin and a complex mixture of peptides isolated from mouse liver. With theses samples, selectivity of POROS-Fe³âº and TiO2 were pH dependant. In the case of liver extract, selectivity increased from 12-18% to 58-60% when loading buffer contained 0.1 M acetic acid or 0.1 M trifluoroacetic acid, respectively. However, with POROS-Fe³âº column, the number of identifications decreased from 356 phosphopeptides with 0.1 M acetic acid to 119 phosphopeptides with 0.1 M TFA. This decrease of binding capacity of POROS-Fe³âº was associated with strong Fe³âº leaching. Furthermore, repetitive use of IMAC-Fe³âº with the 0.5 M NH4OH solution required for phosphopeptide elution induced Fe2O3 accumulation in the column. By comparison, MOAC columns packed with TiO2 support do not present any problem of stability in the same conditions and provide a reliable solution for packed column phosphopeptide enrichment.


Assuntos
Cromatografia de Afinidade/métodos , Fosfopeptídeos/isolamento & purificação , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...