Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 13: 4, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26732432

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disease. In addition to the occurrence of amyloid deposits and widespread tau pathology, AD is associated with a neuroinflammatory response characterized by the activation of microglia and astrocytes. Protein kinase 2 (CK2, former casein kinase II) is involved in a wide variety of cellular processes. Previous studies on CK2 in AD showed controversial results, and the involvement of CK2 in neuroinflammation in AD remains elusive. METHODS: In this study, we used immunohistochemical and immunofluorescent staining methods to investigate the localization of CK2 in the hippocampus and temporal cortex of patients with AD and non-demented controls. We compared protein levels with Western blotting analysis, and we investigated CK2 activity in human U373 astrocytoma cells and human primary adult astrocytes stimulated with IL-1ß or TNF-α. RESULTS: We report increased levels of CK2 in the hippocampus and temporal cortex of AD patients compared to non-demented controls. Immunohistochemical analysis shows CK2 immunoreactivity in astrocytes in AD and control cases. In AD, the presence of CK2 immunoreactive astrocytes is increased. CK2 immunopositive astrocytes are associated with amyloid deposits, suggesting an involvement of CK2 in the neuroinflammatory response. In U373 cells and human primary astrocytes, the selective CK2 inhibitor CX-4945 shows a dose-dependent reduction of the IL-1ß or TNF-α induced MCP-1 and IL-6 secretion. CONCLUSIONS: This data suggests that CK2 in astrocytes is involved in the neuroinflammatory response in AD. The reduction in pro-inflammatory cytokine secretion by human astrocytes using the selective CK2 inhibitor CX-4945 indicates that CK2 could be a potential target to modulate neuroinflammation in AD.


Assuntos
Doença de Alzheimer/patologia , Astrócitos/enzimologia , Encéfalo/patologia , Idoso , Idoso de 80 Anos ou mais , Amiloide/metabolismo , Astrócitos/efeitos dos fármacos , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Caseína Quinase II/metabolismo , Células Cultivadas , Citocinas/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Naftiridinas/farmacologia , Fenazinas
2.
J Alzheimers Dis ; 49(4): 927-43, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26519433

RESUMO

Alzheimer's disease (AD) is characterized by a long pre-clinical phase (20-30 years), during which significant brain pathology manifests itself. Disease mechanisms associated with pathological hallmarks remain elusive. Most processes associated with AD pathogenesis, such as inflammation, synaptic dysfunction, and hyper-phosphorylation of tau are dependent on protein kinase activity. The objective of this study was to determine the involvement of protein kinases in AD pathogenesis. Protein kinase activity was determined in postmortem hippocampal brain tissue of 60 patients at various stages of AD and 40 non-demented controls (Braak stages 0-VI) using a peptide-based microarray platform. We observed an overall decrease of protein kinase activity that correlated with disease progression. The phosphorylation of 96.7% of the serine/threonine peptides and 37.5% of the tyrosine peptides on the microarray decreased significantly with increased Braak stage (p-value <0.01). Decreased activity was evident at pre-clinical stages of AD pathology (Braak I-II). Increased phosphorylation was not observed for any peptide. STRING analysis in combination with pathway analysis and identification of kinases responsible for peptide phosphorylation showed the interactions between well-known proteins in AD pathology, including the Ephrin-receptor A1 (EphA1), a risk gene for AD, and sarcoma tyrosine kinase (Src), which is involved in memory formation. Additionally, kinases that have not previously been associated with AD were identified, e.g., protein tyrosine kinase 6 (PTK6/BRK), feline sarcoma oncogene kinase (FES), and fyn-associated tyrosine kinase (FRK). The identified protein kinases are new biomarkers and potential drug targets for early (pre-clinical) intervention.


Assuntos
Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Hipocampo/enzimologia , Hipocampo/patologia , Proteínas Quinases/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Índice de Gravidade de Doença
3.
Mol Biochem Parasitol ; 181(1): 53-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22008417

RESUMO

The presence of xylose and galactose residues in the structure of trichomonad lipoglycans was indicated by previous studies and the modification of any glycoconjugate with either monosaccharide requires the respective presence of the nucleotide sugars, UDP-xylose and UDP-galactose. Biosynthesis of UDP-xylose de novo is mediated by UDP-xylose synthase (UXS; UDP-glucuronic acid decarboxylase), which converts UDP-glucuronic acid to UDP-xylose, whereas UDP-galactose can be generated from UDP-glucose by UDP-galactose epimerases (GalE). Trichomonas vaginalis cDNAs, encoding proteins with homology to these enzymes from other eukaryotes, were isolated. The recombinant T. vaginalis UDP-xylose synthase and UDP-galactose epimerase were expressed in Escherichia coli and tested via high pressure liquid chromatography to demonstrate their enzymatic activities. Thereby, in this first report on enzymes involved in glycoconjugate biosynthesis in this organism, we demonstrate the existence of xylose and galactose synthesising pathways in T. vaginalis.


Assuntos
Trichomonas vaginalis/metabolismo , Uridina Difosfato Galactose/metabolismo , Uridina Difosfato Xilose/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Escherichia coli/genética , Expressão Gênica , Dados de Sequência Molecular , Análise de Sequência de DNA , UDPglucose 4-Epimerase/genética , UDPglucose 4-Epimerase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...