Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34504002

RESUMO

Intrinsically disordered proteins often form dynamic complexes with their ligands. Yet, the speed and amplitude of these motions are hidden in classical binding kinetics. Here, we directly measure the dynamics in an exceptionally mobile, high-affinity complex. We show that the disordered tail of the cell adhesion protein E-cadherin dynamically samples a large surface area of the protooncogene ß-catenin. Single-molecule experiments and molecular simulations resolve these motions with high resolution in space and time. Contacts break and form within hundreds of microseconds without a dissociation of the complex. The energy landscape of this complex is rugged with many small barriers (3 to 4 kBT) and reconciles specificity, high affinity, and extreme disorder. A few persistent contacts provide specificity, whereas unspecific interactions boost affinity.


Assuntos
Antígenos CD/química , Caderinas/química , Proteínas Intrinsicamente Desordenadas/química , Dobramento de Proteína , beta Catenina/química , Antígenos CD/metabolismo , Caderinas/metabolismo , Difusão , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Cinética , Ligantes , Simulação de Dinâmica Molecular , Conformação Proteica , beta Catenina/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34244431

RESUMO

Dynamin oligomerizes into helical filaments on tubular membrane templates and, through constriction, cleaves them in a GTPase-driven way. Structural observations of GTP-dependent cross-bridges between neighboring filament turns have led to the suggestion that dynamin operates as a molecular ratchet motor. However, the proof of such mechanism remains absent. Particularly, it is not known whether a powerful enough stroke is produced and how the motor modules would cooperate in the constriction process. Here, we characterized the dynamin motor modules by single-molecule Förster resonance energy transfer (smFRET) and found strong nucleotide-dependent conformational preferences. Integrating smFRET with molecular dynamics simulations allowed us to estimate the forces generated in a power stroke. Subsequently, the quantitative force data and the measured kinetics of the GTPase cycle were incorporated into a model including both a dynamin filament, with explicit motor cross-bridges, and a realistic deformable membrane template. In our simulations, collective constriction of the membrane by dynamin motor modules, based on the ratchet mechanism, is directly reproduced and analyzed. Functional parallels between the dynamin system and actomyosin in the muscle are seen. Through concerted action of the motors, tight membrane constriction to the hemifission radius can be reached. Our experimental and computational study provides an example of how collective motor action in megadalton molecular assemblies can be approached and explicitly resolved.


Assuntos
Dinaminas/metabolismo , Modelos Biológicos , Fenômenos Biomecânicos , Dinaminas/química , Transferência Ressonante de Energia de Fluorescência , Cinética , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Nucleotídeos/metabolismo , Domínios Proteicos , Multimerização Proteica , Soluções
3.
Nat Commun ; 12(1): 2967, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016970

RESUMO

Allostery is a pervasive principle to regulate protein function. Growing evidence suggests that also DNA is capable of transmitting allosteric signals. Yet, whether and how DNA-mediated allostery plays a regulatory role in gene expression remained unclear. Here, we show that DNA indeed transmits allosteric signals over long distances to boost the binding cooperativity of transcription factors. Phenotype switching in Bacillus subtilis requires an all-or-none promoter binding of multiple ComK proteins. We use single-molecule FRET to demonstrate that ComK-binding at one promoter site increases affinity at a distant site. Cryo-EM structures of the complex between ComK and its promoter demonstrate that this coupling is due to mechanical forces that alter DNA curvature. Modifications of the spacer between sites tune cooperativity and show how to control allostery, which allows a fine-tuning of the dynamic properties of genetic circuits.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , DNA Bacteriano/química , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/genética , Regulação Alostérica/genética , Sítios de Ligação/genética , DNA Bacteriano/genética , Redes Reguladoras de Genes , Conformação de Ácido Nucleico , Fenótipo , Regiões Promotoras Genéticas/genética
4.
Angew Chem Int Ed Engl ; 59(43): 19121-19128, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-32744783

RESUMO

Membrane proteins require lipid bilayers for function. While lipid compositions reach enormous complexities, high-resolution structures are usually obtained in artificial detergents. To understand whether and how lipids guide membrane protein function, we use single-molecule FRET to probe the dynamics of DtpA, a member of the proton-coupled oligopeptide transporter (POT) family, in various lipid environments. We show that detergents trap DtpA in a dynamic ensemble with cytoplasmic opening. Only reconstitutions in more native environments restore cooperativity, allowing an opening to the extracellular side and a sampling of all relevant states. Bilayer compositions tune the abundance of these states. A novel state with an extreme cytoplasmic opening is accessible in bilayers with anionic head groups. Hence, chemical diversity of membranes translates into structural diversity, with the current POT structures only sampling a portion of the full structural space.


Assuntos
Proteínas de Membrana Transportadoras/química , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Bicamadas Lipídicas/química , Proteínas de Membrana Transportadoras/metabolismo , Conformação Proteica , Transporte Proteico
5.
Proc Natl Acad Sci U S A ; 115(3): 513-518, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29298911

RESUMO

Protein dynamics are typically captured well by rate equations that predict exponential decays for two-state reactions. Here, we describe a remarkable exception. The electron-transfer enzyme quiescin sulfhydryl oxidase (QSOX), a natural fusion of two functionally distinct domains, switches between open- and closed-domain arrangements with apparent power-law kinetics. Using single-molecule FRET experiments on time scales from nanoseconds to milliseconds, we show that the unusual open-close kinetics results from slow sampling of an ensemble of disordered domain orientations. While substrate accelerates the kinetics, thus suggesting a substrate-induced switch to an alternative free energy landscape of the enzyme, the power-law behavior is also preserved upon electron load. Our results show that the slow sampling of open conformers is caused by a variety of interdomain interactions that imply a rugged free energy landscape, thus providing a generic mechanism for dynamic disorder in multidomain enzymes.


Assuntos
Oxirredutases/química , Proteínas de Protozoários/química , Trypanosoma brucei brucei/enzimologia , Transporte de Elétrons , Cinética , Oxirredutases/metabolismo , Conformação Proteica , Domínios Proteicos , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/química
6.
FEBS Lett ; 588(2): 261-8, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24161673

RESUMO

The translation machinery is the engine of life. Extracting the cytoplasmic milieu from a cell affords a lysate capable of producing proteins in concentrations reaching to tens of micromolar. Such lysates, derivable from a variety of cells, allow the facile addition and subtraction of components that are directly or indirectly related to the translation machinery and/or the over-expressed protein. The flexible nature of such cell-free expression systems, when coupled with high throughput monitoring, can be especially suitable for protein engineering studies, allowing one to bypass multiple steps typically required using conventional in vivo protein expression.


Assuntos
Engenharia Genética/métodos , Biossíntese de Proteínas , Animais , Sistema Livre de Células/metabolismo , Humanos
7.
J Am Chem Soc ; 135(30): 11322-9, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23822614

RESUMO

Pauses regulate the rhythm of ribosomal protein synthesis. Mutations disrupting even minor pauses can give rise to improperly formed proteins and human disease. Such minor pauses are difficult to characterize by ensemble methods, but can be readily examined by single-molecule (sm) approaches. Here we use smFRET to carry out real-time monitoring of the expression of a full-length protein, the green fluorescent protein variant Emerald GFP. We demonstrate significant correlations between measured elongation rates and codon and isoacceptor tRNA usage, and provide a quantitative estimate of the effect on elongation rate of replacing a codon recognizing an abundant tRNA with a synonymous codon cognate to a rarer tRNA. Our results suggest that tRNA selection plays an important general role in modulating the rates and rhythms of protein synthesis, potentially influencing simultaneous co-translational processes such as folding and chemical modification.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Elongação Traducional da Cadeia Peptídica , Sequência de Aminoácidos , Códon/genética , Proteínas de Fluorescência Verde/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Conformação Proteica , RNA de Transferência/genética , Ribossomos/genética , Ribossomos/metabolismo
8.
Bioconjug Chem ; 24(7): 1186-90, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23734598

RESUMO

When suitably labeled bulk tRNAs are transfected into cells they give rise to FRET (fluorescence resonance energy transfer) signals via binding to ribosomes that provide a measure of total protein synthesis. Application of this approach to monitoring rates of specific protein synthesis requires achieving a very high signal-to-noise ratio. Such high ratios may be attainable using LRET (luminescence resonance energy transfer) in place of FRET. Lanthanide complexes containing an antenna chromophore are excellent LRET donors. Here we describe the synthesis of a Phe-tRNA(Phe) labeled with a Tb(3+) complex, denoted Tb(3+)-Phe-tRNA(Phe) that, notwithstanding the bulkiness of the Tb(3+) complex, is active in protein synthesis.


Assuntos
Biossíntese de Proteínas , RNA de Transferência/química , Térbio/química , Transferência de Energia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray
9.
Nucleic Acids Res ; 40(12): e88, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22422844

RESUMO

We present a flexible, real-time-coupled transcription-translation assay that involves the continuous monitoring of fluorescent Emerald GFP formation. Along with numerical simulation of a reaction kinetics model, the assay permits quantitative estimation of the effects on full-length protein synthesis of various additions, subtractions or substitutions to the protein synthesis machinery. Since the assay uses continuous fluorescence monitoring, it is much simpler and more rapid than other assays of protein synthesis and is compatible with high-throughput formats. Straightforward alterations of the assay permit determination of (i) the fraction of ribosomes in a cell-free protein synthesis kit that is active in full-length protein synthesis and (ii) the relative activities in supporting protein synthesis of modified (e.g. mutated, fluorescent-labeled) exogenous components (ribosomes, amino acid-specific tRNAs) that replace the corresponding endogenous components. Ribosomes containing fluorescent-labeled L11 and tRNAs labeled with fluorophores in the D-loop retain substantial activity. In the latter case, the extent of activity loss correlates with a combination of steric bulk and hydrophobicity of the fluorophore.


Assuntos
Fluorometria/métodos , Biossíntese de Proteínas , Sistema Livre de Células , Proteínas de Fluorescência Verde/biossíntese , Substâncias Luminescentes/análise , Fenilalanina/metabolismo , Aminoacil-RNA de Transferência/metabolismo , RNA de Transferência de Fenilalanina/metabolismo , Ribossomos/metabolismo , Transcrição Gênica
10.
Mol Cell ; 42(3): 367-77, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21549313

RESUMO

We employ single-molecule fluorescence resonance energy transfer (smFRET) to study structural dynamics over the first two elongation cycles of protein synthesis, using ribosomes containing either Cy3-labeled ribosomal protein L11 and A- or P-site Cy5-labeled tRNA or Cy3- and Cy5-labeled tRNAs. Pretranslocation (PRE) complexes demonstrate fluctuations between classical and hybrid forms, with concerted motions of tRNAs away from L11 and from each other when classical complex converts to hybrid complex. EF-G⋅GTP binding to both hybrid and classical PRE complexes halts these fluctuations prior to catalyzing translocation to form the posttranslocation (POST) complex. EF-G dependent translocation from the classical PRE complex proceeds via transient formation of a short-lived hybrid intermediate. A-site binding of either EF-G to the PRE complex or of aminoacyl-tRNA⋅EF-Tu ternary complex to the POST complex markedly suppresses ribosome conformational lability.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Simulação de Dinâmica Molecular , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Trifosfato de Adenosina/metabolismo , Carbocianinas/química , Cinética , Modelos Químicos , Modelos Genéticos , Modelos Moleculares , Fator G para Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas/genética , RNA de Transferência/química , RNA de Transferência/metabolismo , Proteínas Ribossômicas/química , Ribossomos/química , Ribossomos/genética
11.
PLoS One ; 5(6): e11043, 2010 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-20585385

RESUMO

Enzymatic processing of extracellular matrix (ECM) macromolecules by matrix metalloproteases (MMPs) is crucial in mediating physiological and pathological cell processes. However, the molecular mechanisms leading to effective physiological enzyme-ECM interactions remain elusive. Only scant information is available on the mode by which matrix proteases degrade ECM substrates. An example is the enzymatic degradation of triple helical collagen II fragments, generated by the collagenase MMP-8 cleavage, during the course of acute inflammatory conditions by gelatinase B/MMP-9. As is the case for many other matrix proteases, it is not clear how MMP-9 recognizes, binds and digests collagen in this important physiological process. We used single molecule imaging to directly visualize this protease during its interaction with collagen fragments. We show that the initial binding is mediated by the diffusion of the protease along the ordered helix on the collagen (3/4) fragment, with preferential binding of the collagen tail. As the reaction progressed and prior to collagen degradation, gelatin-like morphologies resulting from the denaturation of the triple helical collagen were observed. Remarkably, this activity was independent of enzyme proteolysis and was accompanied by significant conformational changes of the working protease. Here we provide the first direct visualization of highly complex mechanisms of macromolecular interactions governing the enzymatic processing of ECM substrates by physiological protease.


Assuntos
Colágeno/química , Metaloproteinases da Matriz/metabolismo , Colágeno/metabolismo , Eletroforese em Gel de Poliacrilamida , Matriz Extracelular/metabolismo , Microscopia de Força Atômica , Conformação Proteica
12.
Biochim Biophys Acta ; 1803(1): 29-38, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19406173

RESUMO

The zinc-dependent matrix metalloproteinases (MMPs) belong to a large family of structurally homologous enzymes. These enzymes are involved in a wide variety of biological processes ranging from physiological cell proliferation and differentiation to pathological states associated with tumor metastasis, inflammation, tissue degeneration, and cell death. Controlling the enzymatic activity of specific individual MMPs by antagonist molecules is highly desirable, first, for studying their individual roles, and second as potential therapeutic agents. However, blocking the enzymatic activity with synthetic small inhibitors appears to be an extremely difficult task. Thus, this is an unmet need presumably due to the high structural homology between MMP catalytic domains. Recent reports have recognized a potential role for exosite or allosteric protein regions, distinct from the extended catalytic pocket, in mediating MMP activation and substrate hydrolysis. This raises the possibility that MMP enzymatic and non-enzymatic activities may be modified via antagonist molecules targeted to such allosteric sites or to alternative enzyme domains. In this review, we discuss the structural and functional bases for potential allosteric control of MMPs and highlight potential alternative enzyme domains as targets for designing highly selective MMP inhibitors.


Assuntos
Inibidores de Metaloproteinases de Matriz , Metaloproteinases da Matriz/química , Regulação Alostérica/efeitos dos fármacos , Animais , Anticorpos Bloqueadores/farmacologia , Humanos , Metaloproteinases da Matriz/imunologia , Metaloproteinases da Matriz/metabolismo , Modelos Moleculares , Inibidores de Proteases/farmacologia
13.
Structure ; 15(10): 1227-36, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17937912

RESUMO

The multidomain zinc endopeptidase matrix metalloproteinase-9 (MMP-9) is a recognized therapeutic target in autoimmune diseases, vascular pathologies, and cancer. Despite its importance, structural characterization of full-length pro-MMP-9 is incomplete. Here, we report the structural model of full-length pro-MMP-9 and, in particular, the molecular character of its unique proline-rich and heavily O-glycosylated (OG) domain. Using a powerful combination of small-angle X-ray scattering and single-molecule imaging, we demonstrate that pro-MMP-9 possesses an elongated structure with two terminal globular domains connected by an unstructured OG domain. Image analysis highlights the flexibility of the OG domain, implicating its role in the varied enzyme conformations and in facilitating independent movements of the terminal domains. This may endorse recognition, binding, and processing of substrates, ligands, as well as receptors and marks this domain as an additional target for the design of selective regulators.


Assuntos
Precursores Enzimáticos/química , Metaloproteinase 9 da Matriz/química , Precursores Enzimáticos/metabolismo , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Microscopia de Força Atômica , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Difração de Raios X
14.
J Am Chem Soc ; 129(44): 13566-74, 2007 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-17929919

RESUMO

Activation of matrix metalloproteinase zymogen (pro-MMP) is a vital homeostatic process, yet its molecular basis remains unresolved. Using stopped-flow X-ray spectroscopy of the active site zinc ion, we determined the temporal sequence of pro-MMP-9 activation catalyzed by tissue kallikrein protease in milliseconds to several minutes. The identity of three intermediates seen by X-ray spectroscopy was corroborated by molecular dynamics simulations and quantum mechanics/molecular mechanics calculations. The cysteine-zinc interaction that maintains enzyme latency is disrupted via active-site proton transfers that mediate transient metal-protein coordination events and eventual binding of water. Unexpectedly, these events ensue as a direct result of complexation of pro-MMP-9 and kallikrein and occur before proteolysis and eventual dissociation of the pro-peptide from the catalytic site. Here we demonstrate the synergism among long-range protein conformational transitions, local structural rearrangements, and fine atomic events in the process of zymogen activation.


Assuntos
Cisteína/química , Precursores Enzimáticos/química , Metaloproteinases da Matriz/química , Termodinâmica , Sítios de Ligação , Ativação Enzimática , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Análise Espectral/métodos , Calicreínas Teciduais/química , Raios X , Zinco/química
15.
J Biol Chem ; 279(30): 31646-54, 2004 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-15102849

RESUMO

The metalloproteinase tumor necrosis factor-alpha-converting enzyme (TACE) is involved in the regulation of several key physiological and pathological processes. Therefore, potent and selective synthetic inhibitors are highly sought for the study of the physiological roles of TACE as well as for therapeutic purposes. Because of the high structural similarities between the active site of TACE and those of other related zinc endopeptidases such as disintegrin (ADAMs) and matrix metalloproteinases (MMPs), the design of such tailor-made inhibitors is not trivial. To obtain new insights into this problem, we have used a selective MMP inhibitor as a probe to examine the structural and kinetic effects occurring at the active site of TACE upon inhibition. Specifically, we used the selective MMP mechanism-based inhibitor SB-3CT to characterize the fine structural and electronic differences between the catalytic zinc ions within the active sites of TACE and MMP-2. We show that SB-3CT directly binds the metal ion of TACE as observed before with MMP-2. However, in contrast to MMP-2, the binding mode of SB-3CT to the catalytic zinc ion of TACE is different in the length of the Zn-S(SB-3CT) bond distance and the total effective charge of the catalytic zinc ion. In addition, SB-3CT inhibits TACE in a non-competitive fashion by inducing significant conformational changes in the structure. For MMP-2, SB-3CT behaved as a competitive inhibitor and no significant conformational changes were observed. An examination of the second shell amino acids surrounding the catalytic zinc ion of these enzymes indicated that the active site of TACE is more polar than that of MMP-2 and of other MMPs. On the basis of these results, we propose that although there is a seemingly high structural similarity between TACE and MMP-2, these enzymes are significantly diverse in the electronic and chemical properties within their active sites.


Assuntos
Metaloproteinase 2 da Matriz/química , Metaloendopeptidases/química , Proteínas ADAM , Proteína ADAM17 , Domínio Catalítico , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Compostos Heterocíclicos com 1 Anel/química , Compostos Heterocíclicos com 1 Anel/farmacologia , Humanos , Técnicas In Vitro , Metaloproteinase 2 da Matriz/genética , Inibidores de Metaloproteinases de Matriz , Metaloendopeptidases/antagonistas & inibidores , Metaloendopeptidases/genética , Modelos Moleculares , Estrutura Terciária de Proteína , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Eletricidade Estática , Sulfonas/química , Sulfonas/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Zinco/química
16.
J Biol Chem ; 278(29): 27009-15, 2003 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-12679334

RESUMO

The zinc-dependent gelatinases belong to the family of matrix metalloproteinases (MMPs), enzymes that have been shown to play a key role in angiogenesis and tumor metastasis. These enzymes are capable of hydrolyzing extracellular matrix (ECM) components under physiological conditions. Specific and selective inhibitors aimed at blocking their activity are highly sought for use as potential therapeutic agents. We report herein on a novel mode of inhibition of gelatinase A (MMP-2) by the recently characterized inhibitors 4-(4-phenoxphenylsulfonyl)butane-1,2-dithiol (inhibitor 1) and 5-(4-phenoxphenylsulfonyl) pentane-1,2-dithiol (inhibitor 2). These synthetic inhibitors are selective for MMP-2 and MMP-9. We show that the dithiolate moiety of these inhibitors chelates the catalytic zinc ion of MMP-2 via two sulfur atoms. This mode of binding results in alternation of the coordination number of the metal ion and the induction of conformational changes at the microenvironment of the catalytic zinc ion; a set of events that is likely to be at the root of the potent slow binding inhibition behavior exhibited by these inhibitors. This study demonstrates a distinct approach for the understanding of the structural mechanism governing the molecular interactions between potent inhibitors and catalytic sites of MMPs, which may aid in the design of effective inhibitors.


Assuntos
Metaloproteinase 2 da Matriz/química , Inibidores de Metaloproteinases de Matriz , Domínio Catalítico , Dicroísmo Circular , Desenho de Fármacos , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Humanos , Técnicas In Vitro , Cinética , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Modelos Moleculares , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise Espectral , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacologia , Sulfonas/química , Sulfonas/farmacologia , Raios X , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...