Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 94(9): 3956-3962, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35199994

RESUMO

Quantitative nucleic acid amplification testing (NAAT) is a key enabling technology for infectious disease management, especially in instances where viral load informs therapeutic decisions. Inadequate access to quantitative NAATs remains a challenge to the successful deployment of antiretroviral therapy (ART) regimens for patients with chronic hepatitis B virus (CHB) in low resourced settings (LRS). Current field-deployable NAATs are generally qualitative (yes/no) rather than quantitative in nature, making them ill-suited for viral load monitoring programs for CHB patients. Here, we report the development of a proof-of-concept molecular diagnostic test, the semiquantitative ligation and amplification (SQLA) assay, which achieves semiquantitative detection of input target DNA at two independently tunable detection thresholds with a simple visual readout. The SQLA assay utilizes a duplex competitive thermophilic helicase-dependent amplification (tHDA) chemistry and can be performed in under 1 h.


Assuntos
Vírus da Hepatite B , Hepatite B Crônica , Imunoensaio , Técnicas de Amplificação de Ácido Nucleico , Ácidos Nucleicos , Vírus da Hepatite B/genética , Vírus da Hepatite B/isolamento & purificação , Hepatite B Crônica/diagnóstico , Hepatite B Crônica/virologia , Humanos , Técnicas de Diagnóstico Molecular , Ácidos Nucleicos/análise , Ácidos Nucleicos/genética
2.
Anal Methods ; 12(8): 1085-1093, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35154421

RESUMO

Estimated to be the most common non-viral sexually transmitted infection globally, Trichomonas vaginalis (TV) can lead to pelvic inflammatory disease, pregnancy complications, and increased risk of acquiring and transmitting HIV. Once diagnosed, TV infection can be treated with oral antibiotics; however, infected individuals are often asymptomatic and do not seek treatment. The WHO and others have identified a need for point-of-care tests to expand access to TV testing and screening; ideal test characteristics include high sensitivity and specificity and the ability to use urine as a sample type, rather than invasively collected swab samples. Here, we report on a proof-of-concept prototype for rapid, electrostatic enrichment of DNA from urine samples and demonstrate the use of large volumes of urine to increase sensitivity of downstream nucleic acid amplification testing. We developed an internally controlled thermophilic helicase-dependent amplification (tHDA) assay with lateral flow immunoassay readout and demonstrate that this tHDA assay can be performed directly on our DNA capture filter. We validated our method using clinical urine samples with qPCR-quantified TV loads. Using 62 clinical urine samples and a simple sample processing device, our tHDA assay displayed 96.6% sensitivity and 100% specificity. Our analytical limit of detection was found to be approximately 7 genomic equivalents of TV DNA per mL of sample when 1 mL of sample was tested, comparable to existing isothermal tests for TV. Using large-volume simulated samples (40 mL of buffered urine with spiked-in TV DNA), we also demonstrated that sensitivity could be improved 28-fold to 0.25 genomic equivalents of TV DNA per mL, with a sample processing time of only 2 minutes.

3.
Biomed Microdevices ; 20(2): 35, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29644437

RESUMO

Globally, the microbe Neisseria gonorrhoeae (NG) causes 106 million newly documented sexually transmitted infections each year. Once appropriately diagnosed, NG infections can be readily treated with antibiotics, but high-risk patients often do not return to the clinic for treatment if results are not provided at the point of care. A rapid, sensitive molecular diagnostic would help increase NG treatment and reduce the prevalence of this sexually transmitted disease. Here, we report on the design and development of a rapid, highly sensitive, paperfluidic device for point-of-care diagnosis of NG. The device integrates patient swab sample lysis, nucleic acid extraction, thermophilic helicase-dependent amplification (tHDA), an internal amplification control (NGIC), and visual lateral flow detection within an 80 min run time. Limits of NG detection for the NG/NGIC multiplex tHDA assay were determined within the device, and clinical performance was validated retroactively against qPCR-quantified patient samples in a proof-of-concept study. This paperfluidic diagnostic has a clinically relevant limit of detection of 500 NG cells per device with analytical sensitivity down to 10 NG cells per device. In triplicate testing of 40 total urethral and vaginal swab samples, the device had 95% overall sensitivity and 100% specificity, approaching current laboratory-based molecular NG diagnostics. This diagnostic platform could increase access to accurate NG diagnoses to those most in need.


Assuntos
Dispositivos Lab-On-A-Chip , Neisseria gonorrhoeae/isolamento & purificação , Papel , Testes Imediatos , DNA Bacteriano/genética , Humanos , Neisseria gonorrhoeae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...