Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Front Pharmacol ; 15: 1412725, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045050

RESUMO

Background: Neuropsychopharmacological compounds may exert complex brain-wide effects due to an anatomically and genetically broad expression of their molecular targets and indirect effects via interconnected brain circuits. Electrophysiological measurements in multiple brain regions using electroencephalography (EEG) or local field potential (LFP) depth-electrodes may record fingerprints of such pharmacologically-induced changes in local activity and interregional connectivity (pEEG/pLFP). However, in order to reveal such patterns comprehensively and potentially derive mechanisms of therapeutic pharmacological effects, both activity and connectivity have to be estimated for many brain regions. This entails the problem that hundreds of electrophysiological parameters are derived from a typically small number of subjects, making frequentist statistics ill-suited for their analysis. Methods: We here present an optimized interpretable machine-learning (ML) approach which relies on predictive power in individual recording sequences to extract and quantify the robustness of compound-induced neural changes from multi-site recordings using Shapley additive explanations (SHAP) values. To evaluate this approach, we recorded LFPs in mediodorsal thalamus (MD), prefrontal cortex (PFC), dorsal hippocampus (CA1 and CA3), and ventral hippocampus (vHC) of mice after application of amphetamine or of the dopaminergic antagonists clozapine, raclopride, or SCH23390, for which effects on directed neural communication between those brain structures were so far unknown. Results: Our approach identified complex patterns of neurophysiological changes induced by each of these compounds, which were reproducible across time intervals, doses (where tested), and ML algorithms. We found, for example, that the action of clozapine in the analysed cortico-thalamo-hippocampal network entails a larger share of D1-as opposed to D2-receptor induced effects, and that the D2-antagonist raclopride reconfigures connectivity in the delta-frequency band. Furthermore, the effects of amphetamine and clozapine were surprisingly similar in terms of decreasing thalamic input to PFC and vHC, and vHC activity, whereas an increase of dorsal-hippocampal communication and of thalamic activity distinguished amphetamine from all tested anti-dopaminergic drugs. Conclusion: Our study suggests that communication from the dorsal hippocampus scales proportionally with dopamine receptor activation and demonstrates, more generally, the high complexity of neuropharmacological effects on the circuit level. We envision that the presented approach can aid in the standardization and improved data extraction in pEEG/pLFP-studies.

2.
Br J Clin Pharmacol ; 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38880932

RESUMO

AIMS: Phosphodiesterase 2 (PDE2) regulates intracellular cyclic adenosine monophosphate and guanosine monophosphate (cAMP/cGMP) levels, which contribute to processes crucial for learning and memory. BI 474121, a potent and selective PDE2 inhibitor, is in development for treating cognitive impairment associated with schizophrenia. METHODS: The effects of BI 474121 on cGMP concentrations were first assessed in rat cerebrospinal fluid (CSF) to demonstrate central nervous system (CNS) and functional target engagement. Next, a Phase I study in healthy participants assessed the pharmacokinetics of BI 474121 in CSF vs. plasma, the pharmacodynamics of BI 474121 by measuring cGMP concentrations in the CSF, and the safety of BI 474121. RESULTS: In rats, BI 474121 was associated with a dose-dependent increase (71% at the highest dose tested [3.0 mg kg-1]) in cGMP levels in the CSF relative to vehicle (P < 0.001). In healthy participants, the maximum-measured concentration CSF-to-plasma ratio for BI 474121 exposure was similar following single oral doses of BI 474121 2.5, 10, 20 and 40 mg (dose-adjusted geometric mean: 8.96% overall). BI 474121 2.5-40 mg administration in healthy participants also increased cGMP levels in CSF (maximum exposure-related change from baseline ratio, BI 474121: 1.44-2.20 vs. placebo: 1.26). The most common treatment-emergent adverse event (AE) was mild-to-moderate post-lumbar puncture syndrome, which resolved with standard treatment. No AEs of special interest were observed. CONCLUSIONS: BI 474121 crosses the blood-brain barrier to inhibit PDE2, supporting cGMP as a translational marker to monitor CNS target engagement. These findings promote further clinical development of BI 474121. CLINICALTRIALS: gov number (NCT04672954).

3.
Biol Psychiatry ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38272287

RESUMO

Schizophrenia is a chronic mental illness that affects up to 1% of the population. While efficacious therapies are available for positive symptoms, effective treatment of cognitive and negative symptoms remains an unmet need after decades of research. New developments in the field of neuroimaging are accelerating our knowledge gain regarding the underlying pathophysiology of symptoms in schizophrenia and psychosis spectrum disorders, inspiring new targets for drug development. However, no validated and qualified biomarkers are currently available to support the development of new therapeutics. This review summarizes the current use of neuroimaging technology in clinical drug development for psychotic disorders. As exemplified by drug development programs that target NMDA receptor hypofunction, neuroimaging results play a critical role in target discovery and establishing target engagement and dose selection. Furthermore, pharmacological neuroimaging may provide response biomarkers that allow for early decision making in proof-of-concept studies that leverage pharmacological challenge models in healthy volunteers. That said, while response and predictive biomarkers are starting to be evaluated in patient populations, they continue to play a limited role. Novel approaches to neuroimaging data acquisition and analysis may aid the establishment of biomarkers that are predictive at the individual level in the future. Nevertheless, various gaps in knowledge need to be addressed and biomarkers need to be validated to establish them as "fit for purpose" in drug development.

4.
Transl Psychiatry ; 13(1): 150, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37147311

RESUMO

Cognitive impairment is a core feature of schizophrenia and is poorly addressed by currently available medication. This is partly because the underlying circuits are insufficiently understood, and available animal models for brain dysfunction do not adequately mimic human pathology. To improve the translatability of animal studies and complement behavioral data, EEG measurements are being increasingly used in preclinical research. Brain oscillations are similar across species and can be impaired via several means. In this study, we used two approaches to impair early sensory processing and cortical oscillations in mice: a pharmacological model targeting NMDA receptor function in the whole brain via systemic MK-801 application and an optogenetic model targeting parvalbumin-positive (PV+) interneurons locally in the medial prefrontal cortex (mPFC). We evoked brain activity using auditory stimulation, a tool with high translatability from mouse to human. We then investigated the effect of LY379268, an agonist of mGlu2/3 receptors, a potential therapeutic target for schizophrenia, on single neuron and EEG responses. LY379268 was able to rescue MK-801-induced deficits for a variety of clinically relevant early sensory EEG biomarkers. Single neuron recordings revealed a strong effect of LY379268 on the signal-to-noise ratio during auditory stimulation and optogenetic inhibition of PV+ interneurons. Our results contribute to a better understanding of how group II metabotropic glutamate receptors modulate neuronal population and network activity under sensory stimulation while challenged pharmacologically or optogenetically.


Assuntos
Aminoácidos , Maleato de Dizocilpina , Humanos , Camundongos , Animais , Maleato de Dizocilpina/farmacologia , Aminoácidos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes , Encéfalo
5.
Eur Arch Psychiatry Clin Neurosci ; 273(7): 1557-1566, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36971864

RESUMO

Schizophrenia is a psychiatric disorder characterised by symptoms in three domains: positive (e.g. delusions, hallucinations), negative (e.g. social withdrawal, lack of motivation) and cognitive (e.g. working memory and executive function impairment). Cognitive impairment associated with schizophrenia (CIAS) is a major burden for patients and negatively impacts many aspects of a patient's life. Antipsychotics are the standard-of-care treatment for schizophrenia but only address positive symptoms. So far there are no approved pharmacotherapies for the treatment of CIAS. Iclepertin (BI 425809) is a novel, potent and selective glycine transporter 1 (GlyT1) inhibitor, under development by Boehringer Ingelheim for the treatment of CIAS. Phase I studies have shown it to be safe and well tolerated in healthy volunteers, and central target engagement (inhibition of GlyT1) was achieved in a dose-dependent manner from 5 to 50 mg in healthy volunteers. A Phase II study has demonstrated that iclepertin is safe and well tolerated in patients with schizophrenia and improves cognition at doses of 10 mg and 25 mg. Phase III studies are ongoing to confirm these initial positive safety and efficacy findings with the 10 mg dose, and if successful, iclepertin could become the first approved pharmacotherapy used to treat CIAS.


Assuntos
Disfunção Cognitiva , Esquizofrenia , Humanos , Esquizofrenia/complicações , Esquizofrenia/tratamento farmacológico , Proteínas da Membrana Plasmática de Transporte de Glicina , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Compostos Orgânicos , Ensaios Clínicos Fase II como Assunto
7.
Eur J Pharmacol ; 935: 175306, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36183855

RESUMO

N-methyl-D-aspartate-receptor (NMDAR) hypofunction contributes to cognitive impairments in neuropsychiatric disorders such as schizophrenia. Reduced NMDAR signalling can be enhanced by increasing extracellular levels of the NMDAR co-agonist glycine through inhibition of its transporter (GlyT1). This may be one option to improve cognitive deficits or negative symptoms of schizophrenia. In this preclinical study, we aimed at investigating effects of the GlyT1-inhibitor Bitopertin on cognition, social function and motivation. Central target engagement was assessed by Bitopertin-induced changes in glycine levels in rats' cerebrospinal fluid (CSF) and prefrontal cortex (PFC). Behavioural effects of Bitopertin on recognition memory were evaluated using a social-recognition test in rats, while its effects on working memory were tested in a spontaneous alternation task in mice pre-treated with the NMDAR antagonist MK-801. Bitopertin was further investigated using a social interaction test in rats pre-treated with the NMDAR antagonist phencyclidine, and the effects on effortful motivation were explored in progressive ratio tasks in rats. Results show that Bitopertin increased glycine levels in CSF and PFC. Moreover, it enhanced recognition memory and reduced MK-801-induced working memory deficits. By contrast, Bitopertin had no significant effects on PCP-induced social interaction deficits, and it did not alter effort-related responding. Collectively, our data demonstrate that GlyT1 inhibition by Bitopertin increased CSF and extracellular glycine levels and advocated for pro-cognitive effects of GlyT1 inhibition both in intact and NMDAR antagonists-pre-treated rodents. Together, these findings support the use of GlyT1-inhibitors for the treatment of cognitive symptoms in pathologies characterized by NMDR hypofunction, such as schizophrenia.


Assuntos
Maleato de Dizocilpina , Proteínas da Membrana Plasmática de Transporte de Glicina , Animais , Camundongos , Ratos , Proteínas da Membrana Plasmática de Transporte de Glicina/fisiologia , Roedores , Receptores de N-Metil-D-Aspartato/fisiologia , Glicina/farmacologia , Glicina/uso terapêutico , Cognição
8.
Transl Psychiatry ; 12(1): 329, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953474

RESUMO

Patients with schizophrenia experience cognitive impairment related to neural network dysfunction and deficits in sensory processing. These deficits are thought to be caused by N-methyl-D-aspartate receptor hypofunction and can be assessed in patient populations using electroencephalography (EEG). This substudy from a Phase II, randomized, double-blind, placebo-controlled, parallel-group study investigating the safety and efficacy of the novel glycine transporter-1 inhibitor, iclepertin (BI 425809), assessed the potential of EEG parameters as clinically relevant biomarkers of schizophrenia and response to iclepertin treatment. Eligible patients were randomized to once-daily add-on iclepertin (2, 5, 10, or 25 mg), or placebo (1:1:1:1:2 ratio) for 12 weeks. EEG data were recorded from a subgroup of patients (n = 79) at baseline and end of treatment (EoT). EEG parameters of interest were mismatch negativity (MMN), auditory steady-state response (ASSR), and resting state gamma power, and their correlations with clinical assessments. At baseline, MMN and ASSR exhibited consistent correlations with clinical assessments, indicating their potential value as neurophysiological biomarkers of schizophrenia-related deficits. ASSR measures were positively correlated to the MATRICS Consensus Cognitive Battery overall and neurocognitive composite scores; MMN amplitude was positively correlated with Positive and Negative Syndrome Scale scores. However, correlations between change from baseline (CfB) at EoT in clinical assessments, and baseline or CfB at EoT for EEG parameters were modest and inconsistent between dose groups, which might indicate low potential of these EEG parameters as predictive and treatment response biomarkers. Further methodological refinement is needed to establish EEG parameters as useful drug development tools for schizophrenia.


Assuntos
Esquizofrenia , Biomarcadores , Eletroencefalografia , Potenciais Evocados Auditivos/fisiologia , Humanos , Compostos Orgânicos/uso terapêutico , Esquizofrenia/tratamento farmacológico
9.
J Pharmacol Exp Ther ; 382(2): 223-232, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35661632

RESUMO

N-methyl-D-aspartate (NMDA) receptor hypofunction leading to neural network dysfunction is thought to play an important role in the pathophysiology of cognitive impairment associated with schizophrenia (CIAS). Increasing extracellular concentrations of the NMDA receptor co-agonist glycine through inhibition of glycine transporter-1 (GlyT1) has the potential to treat CIAS by improving cortical network function through enhanced glutamatergic signaling. Indeed, the novel GlyT1 inhibitor iclepertin (BI 425809) improved cognition in a recent clinical study in patients with schizophrenia. The present study tested the ability of iclepertin to reverse deficits in auditory sensory processing and cortical network function induced by the uncompetetive NMDA receptor antagonist, MK-801, using electroencephalography (EEG) to measure auditory event-related potentials (AERPs) and 40 Hz auditory steady-state response (ASSR). In addition, improvements in memory performance with iclepertin were evaluated using the T-maze spontaneous alternation test in MK-801-treated mice and the social recognition test in naïve rats. Iclepertin reversed MK-801-induced deficits in the AERP readouts N1 amplitude and N1 gating, as well as reversing deficits in 40 Hz ASSR power and intertrial coherence. Additionally, iclepertin significantly attenuated an MK-801-induced increase in basal gamma power. Furthermore, iclepertin reversed MK-801-induced working memory deficits in mice and improved social recognition memory performance in rats. Overall, this study demonstrates that inhibition of GlyT1 is sufficient to attenuate MK-801-induced deficits in translatable EEG parameters relevant to schizophrenia. Moreover, iclepertin showed memory-enhancing effects in rodent cognition tasks, further demonstrating the potential for GlyT1 inhibition to treat CIAS. SIGNIFICANCE STATEMENT: Despite the significant patient burden caused by cognitive impairment associated with schizophrenia, there are currently no approved pharmacotherapies. In this preclinical study, the novel glycine transporter inhibitor iclepertin (BI 425809) reversed sensory processing deficits and neural network dysfunction evoked by inhibition of N-methyl-D-aspartate receptors and enhanced working memory performance and social recognition in rodents. These findings support previous clinical evidence for the procognitive effects of iclepertin.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina , Esquizofrenia , Animais , Cognição , Modelos Animais de Doenças , Maleato de Dizocilpina/farmacologia , Camundongos , Redes Neurais de Computação , Compostos Orgânicos , Percepção , Ratos , Receptores de N-Metil-D-Aspartato , Esquizofrenia/tratamento farmacológico
10.
Neuroscience ; 496: 190-204, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35750109

RESUMO

Disturbance in synaptic excitatory and inhibitory (E/I) transmission in the prefrontal cortex is considered a critical factor for cognitive dysfunction, a core symptom in schizophrenia. However, the cortical network pathophysiology induced by E/I imbalance is not well characterized, and an effective therapeutic strategy is lacking. In this study, we simulated imbalanced cortical network by using mice with parvalbumin neuron (PV) specific knockout of GluA1 (AMPA receptor subunit 1) (Gria1-PV KO) as an experimental model. Applying high-content confocal imaging and electrophysiological recordings in the medial prefrontal cortex (mPFC), we found structural and functional alterations in the local network of Gria1-PV KO mice. Additionally, we applied electroencephalography (EEG) to assess potential deficits in mismatch negativity (MMN), the standard readout in the clinic for measuring deviance detection and sensory information processing. Gria1-PV KO animals exhibited abnormal theta oscillation and MMN, which is consistent with clinical findings in cognitively impaired patients. Remarkably, we demonstrated that the glycine transporter 1 (GlyT1) inhibitor, Bitopertin, ameliorates E/I imbalance, hyperexcitability, and sensory processing malfunction in Gria1-PV KO mice. Our results suggest that PV-specific deletion of GluA1 might be an experimental approach for back translating the E/I imbalance observed in schizophrenic patients. Our work offers a systematic workflow to understand the effect of GlyT1 inhibition in restoring cortical network activity from single cells to local brain circuitry. This study highlights that selectively boosting NMDA receptor-mediated excitatory drive to enhance the network inhibitory transmission from interneurons to pyramidal neurons (PYs) is a potential therapeutic strategy for restoring E/I imbalance-associated cognitive-related abnormality.


Assuntos
Interneurônios , Parvalbuminas , Animais , Interneurônios/metabolismo , Camundongos , Parvalbuminas/metabolismo , Córtex Pré-Frontal/metabolismo , Células Piramidais/fisiologia , Receptores de AMPA/metabolismo
11.
Eur J Drug Metab Pharmacokinet ; 47(1): 91-103, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34716565

RESUMO

BACKGROUND AND OBJECTIVE: Increased glycine availability at the synaptic cleft may enhance N-methyl-D-aspartate receptor signalling and provide a promising therapeutic strategy for cognitive impairment associated with schizophrenia. These studies aimed to assess the pharmacokinetics of BI 425809, a potent glycine-transporter-1 inhibitor, when co-administered with a strong cytochrome P450 3A4 (CYP3A4) inhibitor (itraconazole) and inducer (rifampicin). METHODS: In vitro studies using recombinant CYPs, human liver microsomes, and human hepatocytes were conducted to determine the CYP isoforms responsible for BI 425809 metabolism. In addition, two open-label, fixed-treatment period, phase I studies in healthy male volunteers are described. Period 1: participants received oral BI 425809 25 mg (single dose) on day 1; period 2: participants received multiple doses, across 10 days, of oral itraconazole or rifampicin combined with a single dose of oral BI 425809 25 mg on day 4/7 of the itraconazole/rifampicin treatment, respectively. Pharmacokinetic and safety endpoints were assessed in the absence/presence of itraconazole/rifampicin and included area under the concentration-time curve (AUC) over the time interval 0-167 h (AUC0‒167; itraconazole), 0-168 h (AUC0‒168; rifampicin), or 0-infinity (AUC0-∞; rifampicin and itraconazole), maximum measured concentration (Cmax) of BI 425809, and adverse events. RESULTS: In vitro results suggested that CYP3A4 accounted for ≥ 90% of the metabolism of BI 425809. BI 425809 exposure (adjusted geometric mean ratio [%]) was higher in the presence of itraconazole (AUC0‒167: 265.3; AUC0-∞: 597.0; Cmax: 116.1) and lower in the presence of rifampicin (AUC0‒168: 10.3; AUC0-∞: 9.8; Cmax: 37.4) compared with BI 425809 alone. Investigational treatments were well tolerated. CONCLUSIONS: Systemic exposure of BI 425809 was altered in the presence of strong CYP3A4 modulators, corroborating in vitro results that CYP3A4 mediates a major metabolic pathway for BI 425809. TRIAL REGISTRATION NUMBER: NCT02342717 (registered on 15 January 2015) and NCT03082183 (registered on 10 March 2017).


Assuntos
Inibidores do Citocromo P-450 CYP3A/farmacocinética , Itraconazol/farmacocinética , Nootrópicos/farmacocinética , Compostos Orgânicos/farmacocinética , Rifampina/farmacocinética , Esquizofrenia/tratamento farmacológico , Adolescente , Adulto , Área Sob a Curva , Linhagem Celular , Inibidores do Citocromo P-450 CYP3A/sangue , Sinergismo Farmacológico , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Voluntários Saudáveis , Humanos , Itraconazol/administração & dosagem , Itraconazol/sangue , Masculino , Pessoa de Meia-Idade , Nootrópicos/administração & dosagem , Nootrópicos/sangue , Compostos Orgânicos/administração & dosagem , Compostos Orgânicos/sangue , Rifampina/administração & dosagem , Rifampina/sangue , Adulto Jovem
12.
Neuropsychopharmacology ; 46(8): 1526-1534, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33941860

RESUMO

BI 409306, a phosphodiesterase-9 inhibitor under development for treatment of schizophrenia and attenuated psychosis syndrome (APS), promotes synaptic plasticity and cognition. Here, we explored the effects of BI 409306 treatment in the polyriboinosinic-polyribocytidilic acid (poly[I:C])-based mouse model of maternal immune activation (MIA), which is relevant to schizophrenia and APS. In Study 1, adult offspring received BI 409306 0.2, 0.5, or 1 mg/kg or vehicle to establish an active dose. In Study 2, adult offspring received BI 409306 1 mg/kg and/or risperidone 0.025 mg/kg, risperidone 0.05 mg/kg, or vehicle, to evaluate BI 409306 as add-on to standard therapy for schizophrenia. In Study 3, offspring received BI 409306 1 mg/kg during adolescence only, or continually into adulthood to evaluate preventive effects of BI 409306. We found that BI 409306 significantly mitigated MIA-induced social interaction deficits and amphetamine-induced hyperlocomotion, but not prepulse inhibition impairments, in a dose-dependent manner (Study 1). Furthermore, BI 409306 1 mg/kg alone or in combination with risperidone 0.025 mg/kg significantly reversed social interaction deficits and attenuated amphetamine-induced hyperlocomotion in MIA offspring (Study 2). Finally, we revealed that BI 409306 1 mg/kg treatment restricted to adolescence prevented adult deficits in social interaction, whereas continued treatment into adulthood also significantly reduced amphetamine-induced hyperlocomotion (Study 3). Taken together, our findings suggest that symptomatic treatment with BI 409306 can restore social interaction deficits and dopaminergic dysfunctions in a MIA model of neurodevelopmental disruption, lending preclinical support to current clinical trials of BI 409306 in patients with schizophrenia. Moreover, BI 409306 given during adolescence has preventive effects on adult social interaction deficits in this model, supporting its use in people with APS.


Assuntos
Transtornos do Neurodesenvolvimento , Efeitos Tardios da Exposição Pré-Natal , Adulto , Animais , Comportamento Animal , Modelos Animais de Doenças , Feminino , Humanos , Inibidores de Fosfodiesterase , Diester Fosfórico Hidrolases , Gravidez , Pirazóis , Pirimidinas
13.
Early Interv Psychiatry ; 15(5): 1315-1325, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33354862

RESUMO

AIM: Attenuated psychosis syndrome (APS), a condition for further study in the Diagnostic and Statistical Manual of Mental Disorders-5, comprises psychotic symptoms that are qualitatively similar to those observed in schizophrenia but are less severe. Patients with APS are at high risk of converting to first-episode psychosis (FEP). As evidence for effective pharmacological interventions in APS is limited, novel treatments may provide symptomatic relief and delay/prevent psychotic conversion. This trial aims to investigate the efficacy, safety, and tolerability of BI 409306, a potent and selective phosphodiesterase-9 inhibitor, versus placebo in APS. Novel biomarkers of psychosis are being investigated. METHODS: In this Phase II, multinational, double-blind, parallel-group trial, randomized (1:1) patients will receive BI 409306 50 mg or placebo twice daily for 52 weeks. Patients (n = 300) will be enrolled to determine time to remission of APS, time to FEP, change in everyday functional capacity (Schizophrenia Cognition Rating Scale), and change from baseline in Brief Assessment of Cognition composite score and Positive and Negative Syndrome Scale scores. Potential biomarkers of psychosis under investigation include functional measures of brain activity and automated speech analyses. Safety is being assessed throughout. CONCLUSIONS: This trial will determine whether BI 409306 is superior to placebo in achieving sustainable remission of APS and improvements in cognition and functional capacity. These advances may provide evidence-based treatment options for symptomatic relief in APS. Furthermore, the study will assess the effect of BI 409306 on psychotic conversion and explore the identification of patients at risk for conversion using novel biomarkers.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Ensaios Clínicos Fase II como Assunto , Humanos , Transtornos Psicóticos/complicações , Transtornos Psicóticos/tratamento farmacológico , Pirazóis , Pirimidinas , Ensaios Clínicos Controlados Aleatórios como Assunto , Esquizofrenia/complicações , Esquizofrenia/tratamento farmacológico
14.
Brain Behav Immun ; 88: 461-470, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32278850

RESUMO

Pharmacological treatments in laboratory rodents remain a cornerstone of preclinical psychopharmacological research and drug development. There are numerous ways in which acute or chronic pharmacological treatments can be implemented, with each method having certain advantages and drawbacks. Here, we describe and validate a novel treatment method in mice, which we refer to as the micropipette-guided drug administration (MDA) procedure. This administration method is based on a sweetened condensed milk solution as a vehicle for pharmacological substances, which motivates the animals to consume vehicle and/or drug solutions voluntarily in the presence of the experimenter. In a proof-of-concept study, we show that the pharmacokinetic profiles of the atypical antipsychotic drug, risperidone, were similar whether administered via the MDA procedure or via the conventional oral gavage method. Unlike the latter, however, MDA did not induce the stress hormone, corticosterone. Furthermore, we assessed the suitability and validity of the MDA method in a mouse model of maternal immune activation, which is frequently used as a model of immune-mediated neurodevelopmental disorders. Using this model, we found that chronic treatment (>4 weeks, once per day) with risperidone via MDA led to a dose-dependent mitigation of MIA-induced social interaction deficits and amphetamine hypersensitivity. Taken together, the MDA procedure described herein represents a novel pharmacological administration method for per os treatments in mice that is easy to implement, cost effective, non-invasive, and less stressful for the animals than conventional oral gavage methods.


Assuntos
Antipsicóticos , Transtornos do Neurodesenvolvimento , Preparações Farmacêuticas , Administração Oral , Animais , Camundongos , Risperidona
15.
Schizophr Bull ; 46(4): 981-989, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31903492

RESUMO

Accumulating evidence supports parvalbumin expressing inhibitory interneuron (PV IN) dysfunction in the prefrontal cortex as a cause for cognitive impairment associated with schizophrenia (CIAS). PV IN decreased activity is suggested to be the culprit for many of the EEG deficits measured in patients, which correlate with deficits in working memory (WM), cognitive flexibility and attention. In the last few decades, CIAS has been recognized as a heavy burden on the quality of life of patients with schizophrenia, but little progress has been made in finding new treatment options. An important limiting factor in this process is the lack of adequate preclinical models and an incomplete understanding of the circuits engaged in cognition. In this study, we back-translated an auditory stimulation protocol regularly used in human EEG studies into mice and combined it with optogenetics to investigate the role of prefrontal cortex PV INs in excitatory/inhibitory balance and cortical processing. We also assessed spatial WM and reversal learning (RL) during inhibition of prefrontal cortex PV INs. We found significant impairments in trial-to-trial reliability, increased basal network activity and increased oscillation power at 20-60 Hz, and a decreased signal-to-noise ratio, but no significant impairments in behavior. These changes reflect some but not all neurophysiological deficits seen in patients with schizophrenia, suggesting that other neuronal populations and possibly brain regions are involved as well. Our work supports and expands previous findings and highlights the versatility of an approach that combines innovative technologies with back-translated tools used in humans.


Assuntos
Percepção Auditiva/fisiologia , Ondas Encefálicas/fisiologia , Disfunção Cognitiva/fisiopatologia , Excitabilidade Cortical/fisiologia , Interneurônios/fisiologia , Rede Nervosa/fisiopatologia , Inibição Neural/fisiologia , Parvalbuminas , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/fisiopatologia , Animais , Comportamento Animal/fisiologia , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Camundongos , Camundongos da Linhagem 129 , Rede Nervosa/diagnóstico por imagem , Optogenética , Parvalbuminas/metabolismo , Reversão de Aprendizagem/fisiologia , Esquizofrenia/complicações , Memória Espacial/fisiologia
16.
J Pharmacol Exp Ther ; 371(3): 633-641, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31578258

RESUMO

N-methyl-d-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) is an established cellular model underlying learning and memory, and involves intracellular signaling mediated by the second messenger cyclic guanosine monophosphate (cGMP). As phosphodiesterase (PDE)9A selectively hydrolyses cGMP in areas of the brain related to cognition, PDE9A inhibitors may improve cognitive function by enhancing NMDA receptor-dependent LTP. This study aimed to pharmacologically characterize BI 409306, a novel PDE9A inhibitor, using in vitro assays and in vivo determination of cGMP levels in the brain. Further, the effects of BI 409306 on synaptic plasticity evaluated by LTP in ex vivo hippocampal slices and on cognitive performance in rodents were also investigated. In vitro assays demonstrated that BI 409306 is a potent and selective inhibitor of human and rat PDE9A with mean concentrations at half-maximal inhibition (IC50) of 65 and 168 nM. BI 409306 increased cGMP levels in rat prefrontal cortex and cerebrospinal fluid and attenuated a reduction in mouse striatum cGMP induced by the NMDA-receptor antagonist MK-801. In ex vivo rat brain slices, BI 409306 enhanced LTP induced by both weak and strong tetanic stimulation. Treatment of mice with BI 409306 reversed MK-801-induced working memory deficits in a T-maze spontaneous-alternation task and improved long-term memory in an object recognition task. These findings suggest that BI 409306 is a potent and selective inhibitor of PDE9A. BI 409306 shows target engagement by increasing cGMP levels in brain, facilitates synaptic plasticity as demonstrated by enhancement of hippocampal LTP, and improves episodic and working memory function in rodents. SIGNIFICANCE STATEMENT: This preclinical study demonstrates that BI 409306 is a potent and selective PDE9A inhibitor in rodents. Treatment with BI 409306 increased brain cGMP levels, promoted long-term potentiation, and improved episodic and working memory performance in rodents. These findings support a role for PDE9A in synaptic plasticity and cognition. The potential benefits of BI 409306 are currently being investigated in clinical trials.


Assuntos
Química Encefálica/efeitos dos fármacos , GMP Cíclico/análise , Memória/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Pirazóis/farmacocinética , Pirimidinas/farmacocinética , 3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , Animais , GMP Cíclico/líquido cefalorraquidiano , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pirazóis/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Wistar
17.
Physiol Rep ; 6(16): e13782, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30155997

RESUMO

There is growing evidence that impaired sensory processing significantly contributes to cognitive deficits found in schizophrenia. Electroencephalography (EEG) has become an important preclinical and clinical technique to investigate the underlying mechanisms of neurophysiological dysfunctions in psychiatric disorders. Patients with schizophrenia show marked deficits in auditory event-related potentials (ERP), the detection of deviant auditory stimuli (mismatch negativity, MMN), the generation and synchronization of 40 Hz gamma oscillations in response to steady-state auditory stimulation (ASSR) and reduced auditory-evoked oscillation in the gamma range. Due to a novel data-logging technology (Neurologger, TSE Systems), it is now possible to record wireless EEG data in awake, free-moving small rodents without any restrictions due to size of the device or attached cables. Recently, a new version of the Neurologger was released with improved performance to record time-locked event-related EEG signals. In this study, we were able to show in mice that pharmacological intervention with the NMDA receptor antagonists Ketamine and MK-801 can impair a comprehensive selection of EEG/ERP readouts (ERP N1 amplitude, 40 Hz ASSR, basal and evoked gamma oscillation, MMN) and therefore mimic the EEG deficits observed in patients with schizophrenia. Our data support the translational value of NMDA receptor antagonists as a model for preclinical evaluation of sensory processing deficits relevant to schizophrenia. Further, the new Neurologger system is a suitable device for wireless recording of clinically relevant EEG biomarkers in freely moving mice and a robust translational tool to investigate novel therapeutic approaches regarding sensory processing deficits related to psychiatric disorders such as schizophrenia.


Assuntos
Potenciais Evocados Auditivos/fisiologia , Esquizofrenia/fisiopatologia , Telemetria/métodos , Estimulação Acústica/métodos , Animais , Relógios Biológicos/fisiologia , Modelos Animais de Doenças , Maleato de Dizocilpina/farmacologia , Eletrodos Implantados , Eletroencefalografia/métodos , Ketamina/farmacologia , Camundongos Endogâmicos C57BL , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Esquizofrenia/induzido quimicamente , Processamento de Sinais Assistido por Computador
18.
Clin Transl Sci ; 11(6): 616-623, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30136756

RESUMO

BI 425809 is a potent and selective glycine transporter 1 (GlyT1) inhibitor being developed for the treatment of cognitive impairment in Alzheimer disease and schizophrenia. Translational studies evaluated the effects of BI 425809 on glycine levels in rat and human cerebrospinal fluid (CSF). Oral administration of BI 425809 in rats induced a dose-dependent increase of glycine CSF levels from 30% (0.2 mg/kg, not significant) to 78% (2 mg/kg, P < 0.01), relative to vehicle. Similarly, oral administration of BI 425809 in healthy volunteers resulted in a dose-dependent increase in glycine CSF levels at steady state, with a mean 50% increase at doses as low as 10 mg. The peak plasma concentration (Cmax ) of BI 425809 was achieved earlier in plasma than in CSF (tmax 3-5 vs. 5-8 hours, respectively). Generally, BI 425809 was safe and well tolerated. These data provide evidence of functional target engagement of GlyT1 by BI 425809.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina/antagonistas & inibidores , Glicina/líquido cefalorraquidiano , Nootrópicos/farmacologia , Compostos Orgânicos/farmacologia , Administração Oral , Adulto , Doença de Alzheimer/tratamento farmacológico , Animais , Área Sob a Curva , Linhagem Celular , Relação Dose-Resposta a Droga , Glicina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios , Nootrópicos/farmacocinética , Nootrópicos/uso terapêutico , Compostos Orgânicos/administração & dosagem , Compostos Orgânicos/farmacocinética , Cultura Primária de Células , Ratos , Ratos Wistar , Esquizofrenia/tratamento farmacológico , Adulto Jovem
19.
Br J Pharmacol ; 175(14): 3021-3033, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29726015

RESUMO

BACKGROUND AND PURPOSE: Insufficient prefrontal dopamine 1 (D1 ) receptor signalling has been linked to cognitive dysfunction in several psychiatric conditions. Because the PDE1 isoform B (PDE1B) is postulated to regulate D1 receptor-dependent signal transduction, in this study we aimed to elucidate the role of PDE1 in cognitive processes reliant on D1 receptor function. EXPERIMENTAL APPROACH: Cognitive performance of the D1 receptor agonist, SKF38393, was studied in the T-maze continuous alternation task and 5-choice serial reaction time task. D1 receptor/PDE1B double-immunohistochemistry was performed using human and rat prefrontal brain sections. The pharmacological activity of the PDE1 inhibitor, ITI-214, was assessed by measuring the increase in cAMP/cGMP in prefrontal brain tissue and its effect on working memory performance. Mechanistic studies on the modulation of prefrontal neuronal transmission by SKF38393 and ITI-214 were performed using extracellular recordings in brain slices. KEY RESULTS: SKF38393 improved working memory and attentional performance in rodents. D1 receptor/PDE1B co-expression was verified in both human and rat prefrontal brain sections. The pharmacological activity of ITI-214 on its target, PDE1, was demonstrated by its ability to increase prefrontal cAMP/cGMP. In addition, ITI-214 improved working memory performance. Both SKF38393 and ITI-214 facilitated neuronal transmission in prefrontal brain slices. CONCLUSION AND IMPLICATIONS: We hypothesize that PDE1 inhibition improves working memory performance by increasing prefrontal synaptic transmission and/or postsynaptic D1 receptor signalling, by modulating prefrontal downstream second messenger levels. These data, therefore, support the use of PDE1 inhibitors as a potential approach for the treatment of cognitive dysfunction.


Assuntos
2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Cognição/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/antagonistas & inibidores , Agonistas de Dopamina/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Receptores de Dopamina D1/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiologia , Disfunção Cognitiva/tratamento farmacológico , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Camundongos , Ratos Sprague-Dawley , Transdução de Sinais , Transmissão Sináptica/efeitos dos fármacos
20.
Eur Neuropsychopharmacol ; 28(5): 643-655, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29567399

RESUMO

Safety, tolerability and pharmacokinetics of BI 409306, a potent and selective phosphodiesterase 9A inhibitor, were assessed in healthy subjects in three Phase I, within-dose group, double-blind trials. Trial 1 randomised young and elderly subjects to receive BI 409306 25, 50, 100 mg, placebo once daily (OD) or BI 409306 50 mg twice daily (young) for 14 days. Trial 2 randomised young poor metabolisers (PM) of cytochrome P450 isoform 2C19 (CYP2C19) and elderly subjects to receive BI 409306 25, 50 mg or placebo OD for 14 days. Trial 3 randomised Chinese and Japanese extensive metabolisers of CYP2C19 to receive single doses (SD) of BI 409306 25, 50, 100 mg or placebo and Chinese (PM) to SD of BI 409306 100 mg or placebo (Part 1). Japanese PM received SD of BI 409306 100 mg or placebo (Day 1) followed by BI 409306 100 mg or placebo OD for 7 days after a 48-hour washout period (Part 2). Reported adverse events (AE) were mild-to-moderate intensity and increased with BI 409306 dose. Eye disorders were most commonly reported (Trial 1: 40.0-41.7%, Trial 2: 29.2-37.5%, Trial 3: 18.2-66.7%) and increased with dose and systemic exposure. PM reported more AEs than other treatment groups, corresponding to higher systemic exposure to BI 409306. Systemic exposure to BI 409306 produced dose-dependent increases and was slightly greater in elderly versus young subgroups (Trial 1). Steady state was achieved by Day 2-3. Overall, BI 409306 demonstrated good safety, tolerability and minor accumulation after multiple dosing.


Assuntos
Inibidores de Fosfodiesterase/farmacocinética , Pirazóis/farmacocinética , Pirimidinas/farmacocinética , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/efeitos dos fármacos , Alelos , Povo Asiático/genética , Citocromo P-450 CYP2C19/genética , Relação Dose-Resposta a Droga , Método Duplo-Cego , Esquema de Medicação , Feminino , Genótipo , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Inibidores de Fosfodiesterase/efeitos adversos , Inibidores de Fosfodiesterase/sangue , Pirazóis/efeitos adversos , Pirazóis/sangue , Pirimidinas/efeitos adversos , Pirimidinas/sangue , População Branca/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...