Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35408628

RESUMO

Molecular-based Fluorescent Organic Nanoparticles (FONs) are versatile light-emitting nano-tools whose properties can be rationally addressed by bottom-up molecular engineering. A challenging property to gain control over is the interaction of the FONs' surface with biological systems. Indeed, most types of nanoparticles tend to interact with biological membranes. To address this limitation, we recently reported on two-photon (2P) absorbing, red to near infrared (NIR) emitting quadrupolar extended dyes built from a benzothiadiazole core and diphenylamino endgroups that yield spontaneously stealth FONs. In this paper, we expand our understanding of the structure-property relationship between the dye structure and the FONs 2P absorption response, fluorescence and stealthiness by characterizing a dye-related series of FONs. We observe that increasing the strength of the donor end-groups or of the core acceptor in the quadrupolar (D-π-A-π-D) dye structure allows for the tuning of optical properties, notably red-shifting both the emission (from red to NIR) and 2P absorption spectra while inducing a decrease in their fluorescence quantum yield. Thanks to their strong 1P and 2P absorption, all FONs whose median size varies between 11 and 28 nm exhibit giant 1P (106 M-1.cm-1) and 2P (104 GM) brightness values. Interestingly, all FONs were found to be non-toxic, exhibit stealth behaviour, and show vanishing non-specific interactions with cell membranes. We postulate that the strong hydrophobic character and the rigidity of the FONs building blocks are crucial to controlling the stealth nano-bio interface.


Assuntos
Corantes Fluorescentes , Nanopartículas , Corantes Fluorescentes/química , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Fótons , Espectrometria de Fluorescência
2.
Adv Mater ; 33(22): e2006644, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33890332

RESUMO

Fluorescent nanoparticles dedicated to bioimaging applications should possess specific properties that have to be maintained in the aqueous, reactive, and crowded biological environment. These include chemical and photostability, small size (on the scale of subcellular structures), biocompatibility, high brightness, and good solubility. The latter is a major challenge for inorganic nanoparticles, which require surface coating to be made water soluble. Molecular-based fluorescent organic nanoparticles (FONs) may prove a promising, spontaneously water-soluble alternative, whose bottom-up design allows for the fine-tuning of individual properties. Here, the critical challenge of controlling the interaction of nanoparticles with cellular membranes is addressed. This is a report on bright, size-tunable, red-emitting, naturally stealthy FONs that do not require the use of antifouling agents to impede interactions with cellular membranes. As a proof of concept, single FONs diffusing up to 150 µm deep in brain tissue are imaged and tracked.


Assuntos
Encéfalo , Nanopartículas , Corantes Fluorescentes , Água
3.
Nat Protoc ; 15(9): 3088-3104, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32807908

RESUMO

Endocytosis is a fundamental process occurring in all eukaryotic cells. Live cell imaging of endocytosis has helped to decipher many of its mechanisms and regulations. With the pulsed-pH (ppH) protocol, one can detect the formation of individual endocytic vesicles (EVs) with an unmatched temporal resolution of 2 s. The ppH protocol makes use of cargo protein (e.g., the transferrin receptor) coupled to a pH-sensitive fluorescent protein, such as superecliptic pHluorin (SEP), which is brightly fluorescent at pH 7.4 but not fluorescent at pH <6.0. If the SEP moiety is at the surface, its fluorescence will decrease when cells are exposed to a low pH (5.5) buffer. If the SEP moiety has been internalized, SEP will remain fluorescent even during application of the low pH buffer. Fast perfusion enables the complete exchange of low and high pH extracellular solutions every 2 s, defining the temporal resolution of the technique. Unlike other imaging-based endocytosis assays, the ppH protocol detects EVs without a priori hypotheses on the dynamics of vesicle formation. Here, we explain how the ppH protocol quantifies the endocytic activity of living cells and the recruitment of associated proteins in real time. We provide a step-by-step procedure for expression of the reporter proteins with transient transfection, live cell image acquisition with synchronized pH changes and automated analysis. The whole protocol can be performed in 2 d to provide quantitative information on the endocytic process being studied.


Assuntos
Imagem Molecular/métodos , Vesículas Transportadoras/metabolismo , Animais , Linhagem Celular , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Análise Espaço-Temporal
4.
Nat Commun ; 10(1): 4462, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575863

RESUMO

During clathrin mediated endocytosis (CME), the concerted action of dynamin and its interacting partners drives membrane scission. Essential interactions occur between the proline/arginine-rich domain of dynamin (dynPRD) and the Src-homology domain 3 (SH3) of various proteins including amphiphysins. Here we show that multiple SH3 domains must bind simultaneously to dynPRD through three adjacent motifs for dynamin's efficient recruitment and function. First, we show that mutant dynamins modified in a single motif, including the central amphiphysin SH3 (amphSH3) binding motif, partially rescue CME in dynamin triple knock-out cells. However, mutating two motifs largely prevents that ability. Furthermore, we designed divalent dynPRD-derived peptides. These ligands bind multimers of amphSH3 with >100-fold higher affinity than monovalent ones in vitro. Accordingly, dialyzing living cells with these divalent peptides through a patch-clamp pipette blocks CME much more effectively than with monovalent ones. We conclude that dynamin drives vesicle scission via multivalent interactions in cells.


Assuntos
Dinaminas/química , Dinaminas/metabolismo , Endocitose/fisiologia , Domínios e Motivos de Interação entre Proteínas , Animais , Sítios de Ligação , Clatrina/farmacologia , Dinaminas/genética , Endocitose/efeitos dos fármacos , Técnicas de Inativação de Genes , Cinética , Ligantes , Camundongos , Células NIH 3T3 , Ligação Proteica , Domínios Proteicos , Proteômica , Domínios de Homologia de src
5.
Neurobiol Learn Mem ; 166: 107070, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31445077

RESUMO

A stimulation inducing long-term potentiation (LTP) of synaptic transmission induces a persistent expansion of dendritic spines, a phenomenon known as structural LTP (sLTP). We previously proposed that the formation of a reciprocally activating kinase-effector complex (RAKEC) between CaMKII and Tiam1, an activator of the small G-protein Rac1, locks CaMKII into an active conformation, which in turn maintains the phosphorylation status of Tiam1. This makes Rac1 persistently active, specifically in the stimulated spine. To understand the significance of the CaMKII-Tiam1 RAKEC in vivo, we generated a Tiam1 mutant knock-in mouse line in which critical residues for CaMKII binding were mutated into alanines. We confirmed the central role of this interaction on sLTP by observing that KI mice showed reduced Rac1 activity, had smaller spines and a diminished sLTP as compared to their wild-type littermates. Moreover, behavioral tests showed that the novel object recognition memory of these animals was impaired. We thus propose that the CaMKII-Tiam1 interaction regulates spine morphology in vivo and is required for memory storage.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Espinhas Dendríticas/metabolismo , Aprendizagem/fisiologia , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/metabolismo , Animais , Hipocampo/metabolismo , Camundongos Transgênicos , Neurônios/metabolismo , Fosforilação , Reconhecimento Psicológico/fisiologia , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/genética
7.
Int J Biochem Cell Biol ; 93: 41-45, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29056306

RESUMO

Endocytosis, the formation of membrane vesicles from the plasma membrane, is an essential feature of eukaryotic cell biology. Intense research effort has been dedicated to developing methods that can detect endocytosis events with the highest resolution. We have classified these methods into four families. They exploit the physical properties of endocytosis, namely: 1. Distinguishing extracellular from internalised cargo in fixed samples, 2. Monitoring endosomal acidification, 3. Measuring the turnover of endocytic zones and 4. Detecting vesicle scission. The last three families, all based on fluorescence imaging, are used to study endocytosis in living cells. We discuss the advantages and limitations of these methods and conclude on the future developments required to tackle the upcoming challenges in this fundamental field of cell biology.


Assuntos
Endocitose , Imagem Óptica/métodos , Imagem Óptica/tendências , Animais , Humanos
8.
Cell Rep ; 18(8): 1840-1847, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28228251

RESUMO

Endocytosis in neuronal dendrites is known to play a critical role in synaptic transmission and plasticity such as long-term depression (LTD). However, the inability to detect endocytosis directly in living neurons has hampered studies of its dynamics and regulation. Here, we visualized the formation of individual endocytic vesicles containing pHluorin-tagged receptors with high temporal resolution in the dendrites of cultured hippocampal neurons. We show that transferrin receptors (TfRs) are constitutively internalized at optically static clathrin-coated structures. These structures are slightly enriched near synapses that represent preferential sites for the endocytosis of postsynaptic AMPA-type receptors (AMPARs), but not for non-synaptic TfRs. Moreover, the frequency of AMPAR endocytosis events increases after the induction of NMDAR-dependent chemical LTD, but the activity of perisynaptic endocytic zones is not differentially regulated. We conclude that endocytosis is a highly dynamic and stereotyped process that internalizes receptors in precisely localized endocytic zones.


Assuntos
Dendritos/fisiologia , Endocitose/fisiologia , Neurônios/fisiologia , Transporte Proteico/fisiologia , Vesículas Transportadoras/metabolismo , Células Cultivadas , Dendritos/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Humanos , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores da Transferrina/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
9.
Curr Biol ; 26(1): 120-8, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26725203

RESUMO

Phosphoinositide (PtdIns) homeostasis requires a tight spatial and temporal regulation during the endocytic process [1]. Indeed, PtdIns(4,5)P2 plays a crucial role in endocytosis by controlling clathrin-coated pit formation, whereas its conversion into PtdIns4P right after scission of clathrin-coated vesicles (CCVs) is essential for successful uncoating and cargo sorting [1-6]. In non-neuronal cells, endosomal PtdIns(4,5)P2 hydrolysis critically relies on the lipid phosphatase OCRL [7-9], the inactivation of which causes the Oculo-Cerebro-Renal syndrome of Lowe [10, 11]. To understand the coupling between PtdIns(4,5)P2 hydrolysis and endosome formation, a key issue is thus to unravel the mechanism by which OCRL is recruited on CCVs precisely after their scission from the plasma membrane. Here we found that the Rab35 GTPase, which plays a fundamental but poorly understood role in endosomal trafficking after cargo internalization [12-21], directly recruits the OCRL phosphatase immediately after scission of the CCVs. Consistent with Rab35 and OCRL acting together, depletion of either Rab35 or OCRL leads to retention of internalized receptors such as the endogenous cation-independent mannose-6-phosphate receptor (CI-MPR) in peripheral clathrin-positive endosomes that display abnormal association with PtdIns(4,5)P2- and actin-binding proteins. Remarkably, Rab35 loading on CCVs rapidly follows the recruitment of the AP2-binding Rab35 GEF/activator DENND1A (connecdenn 1) and the disappearance of the Rab35 GAP/inhibitor EPI64B. We propose that the precise spatial and temporal activation of Rab35 acts as a major switch for OCRL recruitment on newborn endosomes, post-scission PtdIns(4,5)P2 hydrolysis, and subsequent endosomal trafficking.


Assuntos
Endossomos/metabolismo , Síndrome Oculocerebrorrenal/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Clatrina/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Invaginações Revestidas da Membrana Celular/metabolismo , Endocitose , Células HEK293 , Células HeLa , Humanos , Proteínas dos Microfilamentos/metabolismo , Síndrome Oculocerebrorrenal/enzimologia , Transporte Proteico , Receptor IGF Tipo 2/metabolismo
10.
J Cell Biol ; 207(3): 419-32, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25385186

RESUMO

Fluorescent proteins with pH-sensitive fluorescence are valuable tools for the imaging of exocytosis and endocytosis. The Aequorea green fluorescent protein mutant superecliptic pHluorin (SEP) is particularly well suited to these applications. Here we describe pHuji, a red fluorescent protein with a pH sensitivity that approaches that of SEP, making it amenable for detection of single exocytosis and endocytosis events. To demonstrate the utility of the pHuji plus SEP pair, we perform simultaneous two-color imaging of clathrin-mediated internalization of both the transferrin receptor and the ß2 adrenergic receptor. These experiments reveal that the two receptors are differentially sorted at the time of endocytic vesicle formation.


Assuntos
Endocitose , Exocitose , Proteínas Luminescentes/metabolismo , Animais , Vesículas Revestidas por Clatrina/metabolismo , Evolução Molecular Direcionada , Concentração de Íons de Hidrogênio , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Camundongos , Microscopia de Fluorescência , Células NIH 3T3 , Transporte Proteico , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...