Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glycobiology ; 31(7): 859-872, 2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-33403396

RESUMO

N-glycosylated proteins produced in human embryonic kidney 293 (HEK 293) cells often carry terminal N-acetylgalactosamine (GalNAc) and only low levels of sialylation. On therapeutic proteins, such N-glycans often trigger rapid clearance from the patient's bloodstream via efficient binding to asialoglycoprotein receptor (ASGP-R) and mannose receptor (MR). This currently limits the use of HEK 293 cells for therapeutic protein production. To eliminate terminal GalNAc, we knocked-out GalNAc transferases B4GALNT3 and B4GALNT4 by CRISPR/Cas9 in FreeStyle 293-F cells. The resulting cell line produced a coagulation factor VII-albumin fusion protein without GalNAc but with increased sialylation. This glyco-engineered protein bound less efficiently to both the ASGP-R and MR in vitro and it showed improved recovery, terminal half-life and area under the curve in pharmacokinetic rat experiments. By overexpressing sialyltransferases ST6GAL1 and ST3GAL6 in B4GALNT3 and B4GALNT4 knock-out cells, we further increased factor VII-albumin sialylation; for ST6GAL1 even to the level of human plasma-derived factor VII. Simultaneous knock-out of B4GALNT3 and B4GALNT4 and overexpression of ST6GAL1 further lowered factor VII-albumin binding to ASGP-R and MR. This novel glyco-engineered cell line is well-suited for the production of factor VII-albumin and presumably other therapeutic proteins with fully human N-glycosylation and superior pharmacokinetic properties.


Assuntos
Glicoproteínas , Sialiltransferases , Animais , Técnicas de Inativação de Genes , Glicoproteínas/biossíntese , Glicoproteínas/genética , Glicoproteínas/farmacocinética , Glicosilação , Células HEK293 , Humanos , Ratos , Sialiltransferases/genética , Sialiltransferases/metabolismo
2.
Bioengineering (Basel) ; 4(2)2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28952523

RESUMO

Prevention and treatment of bleeding in patients suffering from hemophilia A are inconvenient due to repeated intravenous infusions owing to the short half-life of coagulation factor VIII (FVIII) in circulation. Besides (glyco-)pegylation of the FVIII molecule, a bioengineering approach comprises the protein fusion to Fc-immunoglobulin (Ig)G that mediate protection from clearance or degradation via binding to the neonatal Fc receptor. While human-like N-glycosylation of recombinant FVIII is known to be crucial for the clotting factor's quality and function, the particular glycosylation of the fused Fc portion has not been investigated in detail so far, despite its known impact on Fcγ receptor binding. Here, we analyzed the N-glycosylation of the Fc part of a chimeric FVIII-Fc protein compared to a commercial IgG1 purified from human plasma. Fc parts from both samples were released by enzymatic cleavage and were subsequently separated via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Corresponding protein bands were referred to PNGase F in-gel digestion in order to release the respective N-glycans. Analysis via matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry revealed structural differences of both N-glycan patterns. Labeling with 2-aminobenzamide (2AB) and analysis via hydrophilic interaction liquid chromatography (HILIC) allowed a quantitative comparison of the respective N-glycosylation. Observed variations in Fc glycosylation of the chimeric FVIII fusion protein and human plasma-derived IgG1, e.g., regarding terminal sialylation, are discussed, focusing on the impact of the clotting factor's properties, most notably its binding to Fcγ receptors.

3.
J Proteomics ; 134: 85-92, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26316330

RESUMO

Glycosylation is the most complex post-translational modification. Thus, it contributes to versatile chemical compositions of proteins, leading to high amounts of protein species. The structural heterogeneity of glycoproteins was also described by the definition of glycoforms. We therefore introduced a new term called "glycoprotein species" to join the two concepts from different fields of biology. In this study, we further determined the theoretical numbers of glycoprotein species of two recombinant glycoproteins - a therapeutical antibody and the human protease inhibitor alpha-1-antitrypsin (A1AT) - based on structural analysis of their N-glycans. Moreover, we showed that variations in the used cell lines and their cultivation conditions strongly influence the number of glycoprotein species in case of recombinant A1AT production. BIOLOGICAL SIGNIFICANCE: Protein glycosylation is a major source for the huge amount of protein species. This study extends the sight of protein species by the following contributions: 1) The new term "glycoprotein species" was defined to introduce the concept of glycoforms into the field. 2) An estimation of the number of potential glycoprotein species of two particular glycoproteins was given. 3) The influence of production conditions for recombinant glycoproteins on glycoprotein species generation was displayed.


Assuntos
Técnicas de Cultura de Células/métodos , alfa 1-Antitripsina/biossíntese , Glicosilação , Células HEK293 , Humanos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , alfa 1-Antitripsina/genética
4.
Protein Expr Purif ; 115: 83-94, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26272370

RESUMO

The market of therapeutic glycoproteins (including coagulation factors, antibodies, cytokines and hormones) is one of the profitable, fast-growing and challenging sectors of the biopharmaceutical industry. Although mammalian cell culture is still expensive and technically complex, the ability to produce desired post-translational modifications, in particular glycosylation, is a major issue. Glycans can influence ligand binding, serum half-life as well as biological activity or product immunogenicity. Aiming to establish a novel production platform for recombinant glycoproteins, the human TE671 cell line was investigated. Since the initial analysis of cell membrane proteins showed a promising glycosylation of TE671 cells for biotechnological purposes, we focused on the recombinant expression of two model glycoproteins of therapeutical relevance. The optimization of the cell transfection procedure and serum-free expression succeeded for the human serine protease inhibitor alpha-1-antitrypsin (A1AT) and the hematopoietic cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF). N-glycan analyses of both purified proteins by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry provided first fundamental insights into the TE671 glycosylation potential. Besides protein specific pattern, strong distinctions - in particular for N-glycan fucosylation and sialylation - were observed depending on the medium conditions of the respective TE671 cell cultivations. The cell line's ability to synthesize complex and highly sialylated N-glycan structures has been shown. Our results demonstrate the TE671 cell line as a serious alternative to other existing human expression systems.


Assuntos
Biotecnologia/métodos , Glicoproteínas/química , Glicoproteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sequência de Carboidratos , Linhagem Celular Tumoral , Glicosilação , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Humanos
5.
Bioengineering (Basel) ; 2(4): 213-234, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-28952479

RESUMO

Manipulations of cell surface glycosylation or glycan decoration of selected proteins hold immense potential for exploring structure-activity relations or increasing glycoprotein quality. Metabolic glycoengineering describes the strategy where exogenously supplied sugar analogues intercept biosynthetic pathways and are incorporated into glycoconjugates. Low membrane permeability, which so far limited the large-scale adaption of this technology, can be addressed by the introduction of acylated monosaccharides. In this work, we investigated tetra-O-acetylated, -propanoylated and -polyethylene glycol (PEG)ylated fucoses. Concentrations of up to 500 µM had no substantial effects on viability and recombinant glycoprotein production of human embryonic kidney (HEK)-293T cells. Analogues applied to an engineered Chinese hamster ovary (CHO) cell line with blocked fucose de novo synthesis revealed an increase in cell surface and recombinant antibody fucosylation as proved by lectin blotting, mass spectrometry and monosaccharide analysis. Significant fucose incorporation was achieved for tetra-O-acetylated and -propanoylated fucoses already at 20 µM. Sequential fucosylation of the recombinant glycoprotein, achieved by the application of increasing concentrations of PEGylated fucose up to 70 µM, correlated with a reduced antibody's binding activity in a Fcγ receptor IIIa (FcγRIIIa) binding assay. Our results provide further insights to modulate fucosylation by exploiting the salvage pathway via metabolic glycoengineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...