Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 272(Pt 1): 132906, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38851991

RESUMO

Sourdough bread enriched with soluble fiber (by in-situ exopolysaccharides production) and insoluble fiber (by gazpacho by-products addition) showed prebiotic effects an in vitro dynamic colonic fermentation performance with obese volunteer's microbiota. Bifidobacterium population was maintained whereas Lactobacillus increased throughout the colonic sections. Conversely, Enterobacteriaceae and Clostridium groups clearly decreased. Specific bacteria associated with beneficial effects increased in the ascending colon (Lactobacillus fermentum, Lactobacillus paracasei, Bifidobacterium longum and Bifidobacterium adolescentis) whereas Eubacterium eligens, Alistipes senegalensis, Prevotella copri and Eubacterium desmolans increased in the transversal and descending colon. Additionally, Blautia faecis and Ruminococcus albus increased in the transversal colon, and Bifidobacterium longum, Roseburia faecis and Victivallis vadensis in the descending colon. Bifidobacterium and Lactobacillus fermented the in-situ exopolysaccharides and released pectins from gazpacho by-products, as well as cellulosic degraded bacteria. This increased the short and medium chain fatty acids. Acetic acid, as well as butyric acid, increased throughout the colonic tract, which showed greater increases only in the transversal and descending colonic segments. Conversely, propionic acid was slightly affected by the colonic fermentation. These results show that sourdough bread is a useful food matrix for the enrichment of vegetable by-products (or other fibers) in order to formulate products with microbiota modulatory capacities.


Assuntos
Pão , Disbiose , Fermentação , Pão/microbiologia , Humanos , Disbiose/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Fibras na Dieta/metabolismo , Polissacarídeos Bacterianos/farmacologia , Colo/microbiologia , Colo/metabolismo , Bifidobacterium/metabolismo , Masculino , Lactobacillus/metabolismo
2.
Int J Biol Macromol ; 269(Pt 2): 132130, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723828

RESUMO

Elicited pumpkin was evaluated as a potential daily consumption product able to modulate the gut microbiota. An in vitro dynamic colonic fermentation performance with microbiota from obese volunteers was used. Prebiotic effects were observed after the pumpkin treatment. Bifidobacterium abundance was maintained during the treatment period whereas Lactobacillus increased in the transversal and descending colon. Conversely, Enterobacteriaceae and Clostridium groups were more stable, although scarce decreasing trends were observed for same species. Increments of Lactobacillus acidophilus and Limosilactobacillus fermentum (old Lactobacillus fermentum) were observed in the whole colonic tract after the treatment period. However, modulatory effects were mainly observed in the transversal and descending colon. Diverse bacteria species were increased, such as Akkermansia muciniphila, Bacteroides dorei, Cloacibacillus porcorum, Clostridium lactatifermentans, Ruminococcus albus, Ruminococcus lactaris, Coprococcus catus, Alistipes shahii or Bacteroides vulgatus. The prebiotic effect of the elicited pumpkin was provided by the fiber of the pumpkin, suggesting a release of pectin molecules in the transversal and distal colonic tract through low cellulosic fiber degradation, explaining the increases in the total propionic and butyric acid in these colonic sections. Also, a possible modulatory role of carotenoids from the sample was suggested since carotenes were found in the descending colon. Hence, the results of this research highlighted pumpkin as a natural product able to modulate the microbiota towards a healthier profile.


Assuntos
Cucurbita , Fibras na Dieta , Disbiose , Microbioma Gastrointestinal , Microbioma Gastrointestinal/efeitos dos fármacos , Cucurbita/química , Cucurbita/microbiologia , Humanos , Disbiose/microbiologia , Fibras na Dieta/farmacologia , Prebióticos , Fermentação , Masculino , Adulto , Feminino , Colo/microbiologia , Colo/metabolismo , Colo/efeitos dos fármacos
3.
ACS Omega ; 8(26): 23373-23388, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37426251

RESUMO

The gut microbiota profile is determined by diet composition, and therefore this interaction is crucial for promoting specific bacterial growth and enhancing the health status. Red radish (Raphanus sativusL.) contains several secondary plant metabolites that can exert a protective effect on human health. Recent studies have shown that radish leaves have a higher content of major nutrients, minerals, and fiber than roots, and they have garnered attention as a healthy food or supplement. Therefore, the consumption of the whole plant should be considered, as its nutritional value may be of greater interest. The aim of this work is to evaluate the effects of glucosinolate (GSL)-enriched radish with elicitors on the intestinal microbiota and metabolic syndrome-related functionalities by using an in vitro dynamic gastrointestinal system and several cellular models developed to study the GSL impact on different health indicators such as blood pressure, cholesterol metabolism, insulin resistance, adipogenesis, and reactive oxygen species (ROS). The treatment with red radish had an influence on short-chain fatty acids (SCFA) production, especially on acetic and propionic acid and many butyrate-producing bacteria, suggesting that consumption of the entire red radish plant (leaves and roots) could modify the human gut microbiota profile toward a healthier one. The evaluation of the metabolic syndrome-related functionalities showed a significant decrease in the gene expression of endothelin, interleukin IL-6, and cholesterol transporter-associated biomarkers (ABCA1 and ABCG5), suggesting an improvement of three risk factors associated with metabolic syndrome. The results support the idea that the use of elicitors on red radish crops and its further consumption (the entire plant) may contribute to improving the general health status and gut microbiota profile.

4.
Nutrients ; 14(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36500996

RESUMO

This study aims to analyze the relationship between gut microbiota composition and health parameters through specific biochemical markers and food consumption patterns in the Spanish population. This research includes 60 Spanish adults aged 47.3 ± 11.2 years old. Biochemical and anthropometric measurements, and a self-referred dietary survey (food frequency questionnaire), were analyzed and compared with the participant´s gut microbiota composition analyzed by 16s rDNA sequencing. Several bacterial strains differed significantly with the biochemical markers analyzed, suggesting an involvement in the participant´s metabolic health. Lower levels of Lactobacillaceae and Oscillospiraceae and an increase in Pasteurellaceae, Phascolarctobacterium, and Haemophilus were observed in individuals with higher AST levels. Higher levels of the Christensenellaceae and a decrease in Peptococcaceae were associated with higher levels of HDL-c. High levels of Phascolarctobacterium and Peptococcus and low levels of Butyricicoccus were found in individuals with higher insulin levels. This study also identified associations between bacteria and specific food groups, such as an increase in lactic acid bacteria with the consumption of fermented dairy products or an increase in Verrucomicrobiaceae with the consumption of olive oil. In conclusion, this study reinforces the idea that specific food groups can favorably modulate gut microbiota composition and have an impact on host´s health.


Assuntos
Produtos Fermentados do Leite , Microbioma Gastrointestinal , Adulto , Humanos , Pessoa de Meia-Idade , Microbioma Gastrointestinal/genética , Dieta , Verrucomicrobia , Lactobacillaceae
5.
Foods ; 10(12)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34945571

RESUMO

The gut microbiota plays a key role in gastrointestinal immune and metabolic functions and is influenced by dietary composition. An in vitro protocol simulating the physiological conditions of the digestive system helps to study the effects of foods/biocompounds on gut microbiome and metabolome. The Dynamic-Colonic Gastrointestinal Digester consists of five interconnected compartments, double jacket vessels that simulate the physiological conditions of the stomach, the small intestine and the three colonic sections, which are the ascending colon, transverse colon and descending colon. Human faeces are required to reproduce the conditions and culture medium of the human colon, allowing the growth of the intestinal microbiota. After a stabilization period of 12 days, a food/biocompound can be introduced to study its modulatory effects during the next 14 days (treatment period). At the end of the stabilization and treatment period, samples taken from the colon compartments are analysed. The 16S rRNA gene analysis reveals the microbiota composition. The untargeted metabolomics analysis gives more than 10,000 features (metabolites/compounds). The present protocol allows in vitro testing of the modulatory effects of foods or biocompounds on gut microbiota composition and metabolic activity.

6.
Foods ; 10(5)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068672

RESUMO

The aim of the study was to evaluate the influence of the red cabbage extracts on the bioaccessibility of their isothiocyanates, and their effect on the intestinal microbiota using a dynamic model of human digestion treated with the gut microbiome of obese adults. The elicitation of red cabbage plants with methyl jasmonate (MeJA) duplicated the content of glucosinolates (GSLs) in the plant organs used for elaborating the encapsulated formula. The use of plasma membrane vesicles, according to a proper methodology and technology, showed a high retention of sulforaphane (SFN) and indol-3-carbinol (I3C) over the course of the 14-day digestion study. The microbiome was scarcely affected by the treatments in terms of microbiota composition or the Bacteroidetes/Firmicutes ratio, but a 3 to 4-fold increase was observed in the production of butyric acid with the encapsulated extract treatment. Based on our pilot red cabbage extract study, the consumption of this extract, mainly encapsulated, may play a potential role in the management of obesity in adults.

7.
Nutrients ; 13(2)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669303

RESUMO

The MD (Mediterranean diet) is recognized as one of the healthiest diets worldwide and is associated with the prevention of cardiovascular and metabolic diseases. Dietary habits are considered one of the strongest modulators of gut microbiota, which seem to play a significant role in health status of the host. The purpose of the present study was to evaluate interactive associations between gut microbiota composition and habitual dietary intake in 360 Spanish adults from the Obekit cohort (normal weight, overweight, and obese participants). Dietary intake and adherence to the MD tests were administered and fecal samples were collected from each participant. Fecal 16S rRNA (ribosomal Ribonucleic Acid) gene sequencing was performed and checked against the dietary habits. MetagenomeSeq was the statistical tool applied to analyze data at the species taxonomic level. Results from this study identified several beneficial bacteria that were more abundant in the individuals with higher adherence to the MD. Bifidobacterium animalis was the species with the strongest association with the MD. Some SCFA (Short Chain Fatty Acids) -producing bacteria were also associated with MD. In conclusion, this study showed that MD, fiber, legumes, vegetable, fruit, and nut intake are associated with an increase in butyrate-producing taxa such as Roseburia faecis, Ruminococcus bromii, and Oscillospira (Flavonifractor) plautii.


Assuntos
Bactérias/genética , Dieta Mediterrânea , Microbiologia de Alimentos , Microbioma Gastrointestinal , Adulto , Bactérias/classificação , Fezes/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espanha
8.
PLoS One ; 15(11): e0240686, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33142314

RESUMO

This study examines the influence of intermittent exposure to cold, hypobaric hypoxia, and their combination, in gut microbiota and their metabolites in vivo, and explores their effects on the physiology of the host. Sprague-Dawley rats were exposed to cold (4°C), hypobaric hypoxia (462 torr), or both simultaneously, 4 h/day for 21 days. Biometrical and hematological parameters were monitored. Gut bacterial subgroups were evaluated by qPCR and short-chain fatty acids were determined by gas chromatography in caecum and feces. Cold increased brown adipose tissue, Clostridiales subpopulation and the concentration of butyric and isovaleric acids in caecum. Hypobaric hypoxia increased hemoglobin, red and white cell counts and Enterobacteriales, and reduced body and adipose tissues weights and Lactobacilliales. Cold plus hypobaric hypoxia counteracted the hypoxia-induced weight loss as well as the increase in white blood cells, while reducing the Bacteroidetes:Firmicutes ratio and normalizing the populations of Enterobacteriales and Lactobacilliales. In conclusion, intermittent cold and hypobaric hypoxia exposures by themselves modified some of the main physiological variables in vivo, while their combination kept the rats nearer to their basal status. The reduction of the Bacteroidetes:Firmicutes ratio and balanced populations of Enterobacteriales and Lactobacilliales in the gut may contribute to this effect.


Assuntos
Tecido Adiposo Marrom/metabolismo , Bactérias/classificação , Ácidos Graxos Voláteis/análise , Hipóxia/metabolismo , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Ceco/química , Cromatografia Gasosa , Temperatura Baixa , Fezes/química , Microbioma Gastrointestinal , Masculino , Filogenia , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...