Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(5): e1012190, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38805549

RESUMO

The human immunodeficiency virus (HIV) envelope protein (Env) mediates viral entry into host cells and is the primary target for the humoral immune response. Env is extensively glycosylated, and these glycans shield underlying epitopes from neutralizing antibodies. The glycosylation of Env is influenced by the type of host cell in which the virus is produced. Thus, HIV is distinctly glycosylated by CD4+ T cells, the major target cells, and macrophages. However, the specific differences in glycosylation between viruses produced in these cell types have not been explored at the molecular level. Moreover, it remains unclear whether the production of HIV in CD4+ T cells or macrophages affects the efficiency of viral spread and resistance to neutralization. To address these questions, we employed the simian immunodeficiency virus (SIV) model. Glycan analysis implied higher relative levels of oligomannose-type N-glycans in SIV from CD4+ T cells (T-SIV) compared to SIV from macrophages (M-SIV), and the complex-type N-glycans profiles seem to differ between the two viruses. Notably, M-SIV demonstrated greater infectivity than T-SIV, even when accounting for Env incorporation, suggesting that host cell-dependent factors influence infectivity. Further, M-SIV was more efficiently disseminated by HIV binding cellular lectins. We also evaluated the influence of cell type-dependent differences on SIV's vulnerability to carbohydrate binding agents (CBAs) and neutralizing antibodies. T-SIV demonstrated greater susceptibility to mannose-specific CBAs, possibly due to its elevated expression of oligomannose-type N-glycans. In contrast, M-SIV exhibited higher susceptibility to neutralizing sera in comparison to T-SIV. These findings underscore the importance of host cell-dependent attributes of SIV, such as glycosylation, in shaping both infectivity and the potential effectiveness of intervention strategies.


Assuntos
Anticorpos Neutralizantes , Linfócitos T CD4-Positivos , Macrófagos , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Vírus da Imunodeficiência Símia/imunologia , Glicosilação , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Animais , Macrófagos/virologia , Macrófagos/imunologia , Macrófagos/metabolismo , Anticorpos Neutralizantes/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Humanos , Macaca mulatta , Polissacarídeos/metabolismo , Polissacarídeos/imunologia
2.
iScience ; 26(12): 108351, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38025783

RESUMO

The accessory viral protein R (Vpr) is encoded by all primate lentiviruses. Vpr counteracts DNA repair pathways, modulates viral immune sensing, and induces cell-cycle arrest in cell culture. However, its impact in vivo is controversial. Here, we show that deletion of vpr is associated with delayed viral replication kinetics, rapid innate immune activation, development and maintenance of strong B and T cell responses, and increased neutralizing activity against SIVmac239 in rhesus macaques. All wild-type SIVmac239-infected animals maintained high viral loads, and five of six developed fatal immunodeficiency during ∼80 weeks of follow-up. Lack of Vpr was associated with better preservation of CD4+ T cells, lower viral loads, and an attenuated clinical course of infection in most animals. Our results show that Vpr contributes to efficient viral immune evasion and the full pathogenic potential of SIVmacin vivo. Inhibition of Vpr may improve humoral immune control of viral replication.

3.
Cells ; 10(3)2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673402

RESUMO

Genetic modification of non-human primates (NHP) paves the way for realistic disease models. The common marmoset is a NHP species increasingly used in biomedical research. Despite the invention of RNA-guided nucleases, one strategy for protein overexpression in NHP is still lentiviral transduction. We generated three male and one female enhanced green fluorescent protein (EGFP)-transgenic founder marmosets via lentiviral transduction of natural preimplantation embryos. All founders accomplished germline transmission of the transgene by natural mating, yielding 20 transgenic offspring together (in total, 45 pups; 44% transgenic). This demonstrates that the transgenic gametes are capable of natural fertilization even when in competition with wildtype gametes. Importantly, 90% of the transgenic offspring showed transgene silencing, which is in sharp contrast to rodents, where the identical transgene facilitated robust EGFP expression. Furthermore, we consistently discovered somatic, but so far, no germ cell chimerism in mixed wildtype/transgenic litters. Somatic cell chimerism resulted in false-positive genotyping of the respective wildtype littermates. For the discrimination of transgenic from transgene-chimeric animals by polymerase chain reaction on skin samples, a chimeric cell depletion protocol was established. In summary, it is possible to establish a cohort of genetically modified marmosets by natural mating, but specific requirements including careful promoter selection are essential.


Assuntos
Quimerismo/embriologia , Proteínas de Fluorescência Verde/metabolismo , Animais , Animais Geneticamente Modificados , Callithrix , Feminino , Masculino
4.
Sci Rep ; 10(1): 17531, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067513

RESUMO

Xenotransplantation using pig organs has achieved survival times up to 195 days in pig orthotopic heart transplantation into baboons. Here we demonstrate that in addition to an improved immunosuppressive regimen, non-ischaemic preservation with continuous perfusion and control of post-transplantation growth of the transplant, prevention of transmission of the porcine cytomegalovirus (PCMV) plays an important role in achieving long survival times. For the first time we demonstrate that PCMV transmission in orthotopic pig heart xenotransplantation was associated with a reduced survival time of the transplant and increased levels of IL-6 and TNFα were found in the transplanted baboon. Furthermore, high levels of tPA-PAI-1 complexes were found, suggesting a complete loss of the pro-fibrinolytic properties of the endothelial cells. These data show that PCMV has an important impact on transplant survival and call for elimination of PCMV from donor pigs.


Assuntos
Infecções por Citomegalovirus/fisiopatologia , Sobrevivência de Enxerto , Transplante de Coração/efeitos adversos , Animais , Animais Geneticamente Modificados , Citomegalovirus/classificação , Infecções por Citomegalovirus/transmissão , Células Endoteliais , Xenoenxertos , Sistema Imunitário , Terapia de Imunossupressão , Imunossupressores/uso terapêutico , Interleucina-6/metabolismo , Papio , Suínos , Transplante Heterólogo , Fator de Necrose Tumoral alfa/metabolismo
5.
Am J Primatol ; 82(6): e23128, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32246726

RESUMO

The social, health, and economic challenges of a steadily increasing aging population demand the use of appropriate translational animal models to address questions like healthy aging, vaccination strategies, or potential interventions during the aging process. Due to their genetic proximity to humans, especially nonhuman primates (NHPs) with a relatively short generation period compared to humans, qualify as excellent animal models for these purposes. The use of common marmosets (Callithrix jacchus) in gerontology research steadily increased over the last decades, yet important information about their aging parameters are still missing. We therefore aimed to characterize their aging immune system by comprehensive flow cytometric phenotyping of blood immune cells from juvenile, adult, aging, and geriatric animals. Aged and geriatric animals displayed clear signs of immunosenescence. A decline in CD4/CD8 ratio, increased expression of HLA-DR and PD-1, higher frequencies of CD95+ memory cells, alterations in cytokine secretion, and a decline in the proliferative capacity proved T cell senescence in aging marmosets. Also, the B cell compartment was affected by age-related changes: while overall B cell numbers remained stable with advancing age, expression of the activation marker CD80 increased and immunoglobulin M expression decreased. Interestingly, marmoset B cell memory subset distribution rather mirrored the human situation than that of other NHP. CD21+ CD27- naïve B cell frequencies decreased while those of CD21- CD27- tissue memory B cells increased with age. Furthermore, frequencies and numbers of NK cells as part of the innate immune system declined with advancing age. Thus, the observed immunological changes in common marmosets over their life span revealed several similarities to age-related changes in humans and encourages further studies to strengthen the common marmoset as a potential aging model.


Assuntos
Envelhecimento/imunologia , Callithrix/fisiologia , Sistema Imunitário/fisiologia , Animais , Relação CD4-CD8 , Feminino , Citometria de Fluxo/veterinária , Longevidade , Masculino , Modelos Animais , Fatores Sexuais
6.
Cell Rep ; 30(7): 2261-2274.e7, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32075764

RESUMO

The inability of Nef to downmodulate the CD3-T cell receptor (TCR) complex distinguishes HIV-1 from other primate lentiviruses and may contribute to its high virulence. However, the role of this Nef function in virus-mediated immune activation and pathogenicity remains speculative. Here, we selectively disrupted this Nef activity in SIVmac239 and analyzed the consequences for the virological, immunological, and clinical outcome of infection in rhesus macaques. The inability to downmodulate CD3-TCR does not impair viral replication during acute infection but is associated with increased immune activation and antiviral gene expression. Subsequent early reversion in three of six animals suggests strong selective pressure for this Nef function and is associated with high viral loads and progression to simian AIDS. In the absence of reversions, however, viral replication and the clinical course of infection are attenuated. Thus, Nef-mediated downmodulation of CD3 dampens the inflammatory response to simian immunodeficiency virus (SIV) infection and seems critical for efficient viral immune evasion.


Assuntos
Evasão da Resposta Imune/imunologia , Complexo Receptor-CD3 de Antígeno de Linfócitos T/imunologia , Proteínas Virais Reguladoras e Acessórias/metabolismo , Animais , Feminino , Produtos do Gene nef , Inflamação/imunologia , Inflamação/patologia , Macaca mulatta , Masculino , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Vírus da Imunodeficiência Símia/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...