Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 59(6): 1678-91, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16553875

RESUMO

We previously reported that Chlamydia trachomatis expresses the genes encoding tryptophan synthase (trpBA) and the tryptophan repressor (trpR). Here we employ primer extension analysis to identify the transcriptional origins of both trpR and trpBA, allowing for the identification of the putative operator sequences for both trpR and trpBA. Moreover we demonstrate that native recombinant chlamydial TrpR binds to the predicted operator sequence upstream of trpR. A restriction endonuclease protection assay was designed and used to demonstrate that 5-fluorotryptophan was the only tryptophan analogue capable of activating binding of native recombinant chlamydial TrpR to its operator. Additionally, 5-fluorotryptophan was the only analogue that repressed expression of trpBA at a level analogous to L-tryptophan itself. Based on these findings, a mutant selection protocol was designed and a C. trachomatis isolate containing a frameshift mutation in trpR was isolated. This chlamydial mutant synthesizes a truncated TrpR protein that cannot regulate expression of trpBA and trpR in response to changes in tryptophan levels. These findings provide the first genetic proof that TrpR acts as a negative regulator of transcription in C. trachomatis.


Assuntos
Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/genética , Regulação Bacteriana da Expressão Gênica , Regiões Operadoras Genéticas , Regulon/genética , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sequência de Bases , Chlamydia trachomatis/efeitos dos fármacos , Chlamydia trachomatis/metabolismo , DNA Bacteriano/metabolismo , Expressão Gênica/efeitos dos fármacos , Dados de Sequência Molecular , Mutagênese , Mutação , Proteínas Repressoras/genética , Triptofano/análogos & derivados , Triptofano/metabolismo , Triptofano/farmacologia , Triptofano Sintase/genética
2.
Infect Immun ; 74(1): 225-38, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16368976

RESUMO

Gamma interferon (IFN-gamma)-induced effector mechanisms have potent antichlamydial activities that are critical to host defense. The most prominent and well-studied effectors are indoleamine dioxygenase (IDO) and nitric oxide (NO) synthase. The relative contributions of these mechanisms as inhibitors of chlamydial in vitro growth have been extensively studied using different host cells, induction mechanisms, and chlamydial strains with conflicting results. Here, we have undertaken a comparative analysis of cytokine- and lipopolysaccharide (LPS)-induced IDO and NO using an extensive assortment of human and murine host cells infected with human and murine chlamydial strains. Following cytokine (IFN-gamma or tumor necrosis factor alpha) and/or LPS treatment, the majority of human cell lines induced IDO but failed to produce NO. Conversely, the majority of mouse cell lines studied produced NO, not IDO. Induction of IDO in human cell lines inhibited growth of L2 and mouse pneumonitis agent, now referred to as Chlamydia muridarum MoPn equally in all but two lines, and inhibition was completely reversible by the addition of tryptophan. IFN-gamma treatment of mouse cell lines resulted in substantially greater reduction of L2 than MoPn growth. However, despite elevated NO production by murine cells, blockage of NO synthesis with the l-arginine analogue N-monomethyl-l-arginine only partially rescued chlamydial growth, suggesting the presence of another IFN-gamma-inducible antichlamydial mechanism unique to murine cells. Moreover, NO generated from the chemical nitric oxide donor sodium nitroprusside showed little direct effect on chlamydial infectivity or growth, indicating a natural resistance to NO. Finally, IFN-gamma-inducible IDO expression in human HeLa cells was inhibited following exogenous NO treatment, resulting in a permissive environment for chlamydial growth. In summary, cytokine- and LPS-inducible effectors produced by human and mouse cells differ and, importantly, these host-specific effector responses result in chlamydial strain-specific antimicrobial activities.


Assuntos
Chlamydia muridarum/crescimento & desenvolvimento , Chlamydia muridarum/imunologia , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/imunologia , Interferon gama/fisiologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Infecções por Chlamydia/enzimologia , Infecções por Chlamydia/imunologia , Infecções por Chlamydia/prevenção & controle , Células HeLa , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/biossíntese , Indolamina-Pirrol 2,3,-Dioxigenase/fisiologia , Interferon gama/genética , Lipopolissacarídeos/farmacologia , Camundongos , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/fisiologia
3.
Proc Natl Acad Sci U S A ; 102(30): 10658-63, 2005 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-16020528

RESUMO

Chlamydiae are obligate intracellular pathogens that can exhibit a broad host range in infection tropism despite maintaining near genomic identity. Here, we have investigated the molecular basis for this unique host-pathogen relationship. We show that human and murine chlamydial infection tropism is linked to unique host and pathogen genes that have coevolved in response to host immunity. This intimate host-pathogen niche revolves around a restricted repertoire of host species-specific IFN-gamma-mediated effector responses and chlamydial virulence factors capable of inhibiting these effector mechanisms. In human epithelial cells, IFN-gamma induces indoleamine 2,3-dioxygenase expression that inhibits chlamydial growth by depleting host tryptophan pools. Human chlamydial strains, but not the mouse strain, avoid this response by the production of tryptophan synthase that rescues them from tryptophan starvation. Conversely, in murine epithelial cells IFN-gamma induces expression of p47 GTPases, but not indoleamine 2,3-dioxygenase. One of these p47 GTPases (Iigp1) was shown by small interfering RNA silencing experiments to specifically inhibit human strains, but not the mouse strain. Like human strains and their host cells, the murine strain has coevolved with its murine host by producing a large toxin possessing YopT homology, possibly to circumvent host GTPases. Collectively, our findings show chlamydial host infection tropism is determined by IFN-gamma-mediated immunity.


Assuntos
Infecções por Chlamydia/imunologia , Chlamydia trachomatis/imunologia , Regulação da Expressão Gênica , Interferon gama/imunologia , Oviductos/citologia , Animais , Infecções por Chlamydia/genética , Chlamydia trachomatis/genética , Chlamydia trachomatis/patogenicidade , Células Epiteliais/imunologia , Evolução Molecular , Feminino , GTP Fosfo-Hidrolases/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Camundongos , Análise em Microsséries , Óxido Nítrico Sintase Tipo II/metabolismo , Oviductos/imunologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Triptofano/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
4.
J Biol Chem ; 280(7): 5456-67, 2005 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-15591067

RESUMO

Here we report on a Chlamydia trachomatis gene that complements the growth defect of a thymidylate synthase-deficient strain of Escherichia coli. The complementing gene encodes a 60.9-kDa protein that shows low level primary sequence homology to a new class of thymidylate-synthesizing enzymes, termed flavin-dependent thymidylate synthases (FDTS). Purified recombinant chlamydial FDTS (CTThyX) contains bound flavin. Results with site-directed mutants indicate that highly conserved arginine residues are required for flavin binding. Kinetic characterization indicates that CTThyX is active as a tetramer with NADPH, methylenetetrahydrofolate, and dUMP required as substrates, serving as source of reducing equivalents, methyl donor, and methyl acceptor, respectively. dTMP and H(4)folate are products of the reaction. Production of H(4)folate rather than H(2)folate, as in the classical thymidylate synthase reaction, eliminates the need for dihydrofolate reductase, explaining the trimethoprim-resistant phenotype displayed by thyA(-) E. coli-expressing CTThyX. In contrast to the extensively characterized thyA-encoded thymidylate synthases, which form a ternary complex with substrates dUMP and CH(2)H(4)folate and follow an ordered sequential mechanism, CTThyX follows a ping-pong kinetic mechanism involving a methyl enzyme intermediate. Mass spectrometry was used to localize the methyl group to a highly conserved arginine, and site-directed mutagenesis showed this arginine to be critical for thymidylate synthesizing activity. These differentiating characteristics clearly distinguish FDTS from ThyA, making this class of enzymes attractive targets for rational drug design.


Assuntos
Chlamydia trachomatis/enzimologia , Flavinas/metabolismo , Timidilato Sintase/metabolismo , Sequência de Aminoácidos , Catálise/efeitos dos fármacos , Chlamydia trachomatis/genética , Clonagem Molecular , Nucleotídeos de Desoxiuracil/metabolismo , Desenho de Fármacos , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Flavinas/farmacologia , Ácido Fólico/metabolismo , Teste de Complementação Genética , Cinética , Dados de Sequência Molecular , NADP/metabolismo , Fases de Leitura Aberta/genética , Oxirredução , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato , Timidina Monofosfato/metabolismo , Timidilato Sintase/química , Timidilato Sintase/deficiência , Timidilato Sintase/genética
5.
Mol Microbiol ; 52(3): 903-16, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15101993

RESUMO

Comparative genomics indicates that vast differences in Chlamydia sp. host range and disease characteristics can be traced back to subtle variations in gene content within a region of the chromosome termed the plasticity zone. Genes required for tryptophan biosynthesis are located in the plasticity zone; however, the complement of genes encoded varies depending on the chlamydial species examined. Of the sequenced chlamydia genomes, Chlamydia psittaci GPIC contains the most complete tryptophan biosynthesis operon, encoding trpRDCFBA. Immediately downstream of the trp operon are genes encoding kynureninase and ribose phosphate pyrophosphokinase. Here, we show that, in GPIC, these genes are transcribed as a single transcript, the expression of which is regulated by tryptophan. Complementation analyses, using various mutant Escherichia coli isolates, indicate that the tryptophan biosynthesis, kynureninase and ribose phosphate pyrophosphokinase gene products are functional. Furthermore, growth of C. psittaci GPIC in HeLa cells, cultured in tryptophan-free medium, could be rescued by the addition of anthranilate, kynurenine or indole. In total, our results indicate that this complement of genes enables GPIC to recycle tryptophan and thus accounts for the interferon-gamma resistant phenotype displayed in indoleamine-2,3-dioxygenase-expressing host cells.


Assuntos
Chlamydophila psittaci/genética , Chlamydophila psittaci/metabolismo , Interferon gama/metabolismo , Triptofano Oxigenase/metabolismo , Triptofano/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Células HeLa , Humanos , Dados de Sequência Molecular , Óperon , Alinhamento de Sequência , Triptofano Oxigenase/genética
6.
Acta Crystallogr D Biol Crystallogr ; 60(Pt 2): 376-8, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14747731

RESUMO

Ribonucleotide reductases (RNRs) catalyse the conversion of ribonucleotides to deoxyribonucleotides, utilizing radical chemistry to carry out the reaction. Class I RNRs consist of R1 and R2 subunits: R1 contains the active site and R2 generates and stores a stable tyrosyl radical. The conserved tyrosine where the radical is stored until needed in R1 has previously been believed to be an absolute requirement for R2 activity. The Chlamydia trachomatis R2 lacks this tyrosine and a phenylalanine is present in its place, but the protein is still active. Here, the crystallization of C. trachomatis R2 is described. A heavy-atom co-crystallization approach was used to obtain crystals. Hopefully, the C. trachomatis R2 structure will provide key clues as to how this enzyme is able to function while lacking the features that have previously been believed to be essential for activity.


Assuntos
Chlamydia trachomatis/enzimologia , Ribonucleotídeo Redutases/química , Sítios de Ligação , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Fenilalanina/química , Estrutura Terciária de Proteína , Tirosina/química
7.
Mol Microbiol ; 49(5): 1347-59, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12940992

RESUMO

We previously reported that Chlamydia trachomatis expresses the genes encoding tryptophan synthase (trpA and trpB). The results presented here indicate that C. trachomatis also expresses the tryptophan repressor gene (trpR). The complement of genes regulated by tryptophan levels in C. trachomatis is limited to trpBA and trpR. trp gene expression was repressed if chlamydiae-infected HeLa cells were cultured the presence of tryptophan and induced if grown in tryptophan-depleted medium or in the presence of IFN-gamma. Furthermore, expression of the trp genes in strains which encode a functional tryptophan synthase is repressed when infected cells are cultured in the presence of the tryptophan precursor indole. Results from experiments with cycloheximide, an inhibitor of eukaryotic protein synthesis, indicate that in addition to the absolute size of the intracellular tryptophan pool, host competition for available tryptophan plays a key role in regulating expression of the trp genes. The tryptophan analogue, 5-fluorotryptophan, repressed trp gene expression and induced the formation of aberrant organisms of C. trachomatis. The growth-inhibitory properties of 5-fluorotryptophan could be reversed with exogenous tryptophan but not indole. In total, our results indicate that the ability to regulate trp gene expression in response to tryptophan availability is advantageous for the intracellular survival of this organism. Furthermore, the fact that C. trachomatis has retained the capacity to respond to tryptophan limitation supports the view that the in vivo antichlamydial effect of IFN-gamma is via the induction of the tryptophan-degrading enzyme, indoleamine 2,3-dioxygenase.


Assuntos
Proteínas de Bactérias , Chlamydia trachomatis/genética , Regulação Bacteriana da Expressão Gênica , Triptofano Sintase/genética , Triptofano/análogos & derivados , Chlamydia trachomatis/crescimento & desenvolvimento , Cicloeximida/farmacologia , Genes Bacterianos , Genes Reguladores , Células HeLa , Humanos , Corpos de Inclusão/microbiologia , Indóis/metabolismo , Indóis/farmacologia , Interferon gama/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , RNA Mensageiro/biossíntese , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Transcrição Gênica , Triptofano/metabolismo , Triptofano/farmacologia , Triptofano Oxigenase/biossíntese , Triptofano Sintase/biossíntese
8.
J Clin Invest ; 111(11): 1757-69, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12782678

RESUMO

We previously reported that laboratory reference strains of Chlamydia trachomatis differing in infection organotropism correlated with inactivating mutations in the pathogen's tryptophan synthase (trpBA) genes. Here, we have applied functional genomics to extend this work and find that the paradigm established for reference serovars also applies to clinical isolates - specifically, all ocular trachoma isolates tested have inactivating mutations in the synthase, whereas all genital isolates encode a functional enzyme. Moreover, functional enzyme activity was directly correlated to IFN-gamma resistance through an indole rescue mechanism. Hence, a strong selective pressure exists for genital strains to maintain a functional synthase capable of using indole for tryptophan biosynthesis. The fact that ocular serovars (serovar B) isolated from the genital tract were found to possess a functional synthase provided further persuasive evidence of this association. These results argue that there is an important host-parasite relationship between chlamydial genital strains and the human host that determines organotropism of infection and the pathophysiology of disease. We speculate that this relationship involves the production of indole by components of the vaginal microbial flora, allowing chlamydiae to escape IFN-gamma-mediated eradication and thus establish persistent infection.


Assuntos
Chlamydia trachomatis/enzimologia , Olho/microbiologia , Genitália Feminina/microbiologia , Polimorfismo Genético , Triptofano Sintase/genética , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Sequência de Bases , Western Blotting , Diferenciação Celular , Chlamydia trachomatis/genética , Feminino , Células HeLa , Humanos , Indóis/farmacologia , Interferon gama/metabolismo , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie
9.
J Biol Chem ; 277(30): 26893-903, 2002 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-12011099

RESUMO

Here we report the cloning and sequencing of a region of the chlamydiae chromosome termed the "plasticity zone" from all the human serovars of C. trachomatis containing the tryptophan biosynthesis genes. Our results show that this region contains orthologues of the tryptophan repressor as well as the alpha and beta subunits of tryptophan synthase. Results from reverse transcription-PCR and Western blot analyses indicate that the trpBA genes are transcribed, and protein products are expressed. The TrpB sequences from all serovars are highly conserved. In comparison with other tryptophan synthase beta subunits, the chlamydial TrpB subunit retains all conserved amino acid residues required for beta reaction activity. In contrast, the chlamydial TrpA sequences display numerous mutations, which distinguish them from TrpA sequences of all other prokaryotes. All ocular serovars contain a deletion mutation resulting in a truncated TrpA protein, which lacks alpha reaction activity. The TrpA protein from the genital serovars retains conserved amino acids required for catalysis but has mutated several active site residues involved in substrate binding. Complementation analysis in Escherichia coli strains, with defined mutations in tryptophan biosynthesis, and in vitro enzyme activity data, with cloned TrpB and TrpA proteins, indicate these mutations result in a TrpA protein that is unable to utilize indole glycerol 3-phosphate as substrate. In contrast, the chlamydial TrpB protein can carry out the beta reaction, which catalyzes the formation of tryptophan from indole and serine. The activity of the chlamydial Trp B protein differs from that of the well characterized E. coli and Salmonella TrpBs in displaying an absolute requirement for full-length TrpA. Taken together our data indicate that genital, but not ocular, serovars are capable of utilizing exogenous indole for the biosynthesis of tryptophan.


Assuntos
Chlamydia trachomatis/enzimologia , Triptofano Sintase/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Western Blotting , Células Cultivadas , Chlamydia trachomatis/fisiologia , Clonagem Molecular , Escherichia coli/metabolismo , Teste de Complementação Genética , Glicerofosfatos/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Plasmídeos/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Salmonella/metabolismo , Homologia de Sequência de Aminoácidos , Transcrição Gênica , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...