Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37836798

RESUMO

Contact lens-mediated microbial keratitis caused by Pseudomonas aeruginosa and Streptococcus pneumoniae provokes corneal damage and vision loss. Recently, natural phytochemicals have become complementary medicines for corneal destruction. Herein, we aimed to identify multi-targeting Aloe vera-derived phytochemicals capable of inhibiting bacterial and host targets of keratitis through ADME (absorption, distribution, metabolism, and excretion), docking, molecular dynamics (MD) simulation, MMGBSA (molecular mechanics generalized Born surface area) and density functional theory (DFT) investigations. An extensive literature search revealed ExoU, ExoS, ExoT, ExoY, and PLY as virulent bacterial targets. Simultaneously, differential gene expression (DGE) and pathway enrichment analysis-specified host transcription factor (SPI1) influences keratitis pathogenesis. Molecular docking analysis uncovered aloeresin-A as a promising inhibitor against bacterial and host targets, demonstrating strong binding energies ranging from -7.59 to -6.20 kcal/mol. Further, MMGBSA and MD simulation analysis reflect higher binding free energies and stable interactions of aloeresin-A with the targets. In addition, DFT studies reveal the chemical reactiveness of aloeresin-A through quantum chemical calculations. Hence, our findings show aloeresin-A to be a promising candidate for effectively inhibiting keratitis. However, additional research is imperative for potential integration into lens care solutions.


Assuntos
Lentes de Contato , Ceratite , Humanos , Simulação de Acoplamento Molecular , Multiômica , Ceratite/microbiologia , Lentes de Contato/efeitos adversos , Fatores de Transcrição/metabolismo , Pseudomonas aeruginosa
2.
J Biomol Struct Dyn ; : 1-11, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37489910

RESUMO

Transient receptor potential vanilloid 1 protein (TRPV1) is expressed widely in skin and sensory neurons that contribute to pain/heat sensation in the human system. TRPV1 gene polymorphisms are susceptible to multiple diseases and it is considered a therapeutic target for various inflammatory conditions. Among the TRPV1 variants, rs8065080 (1911 A > G) plays a vital role in painful osteoarthritis and migraine. The presence of rs8065080 polymorphism may render drug efficacy. This study aimed to identify better antagonists against wild-type and variant TRPV1 that may help in the relief of pain/inflammation. We constructed suitable TRPV1 protein structures for wild-type and rs8065080 variant through a homology modelling approach. A total of 3363 anti-inflammatory compounds with high chemical diversity and good drug-like properties were collected and screened against the generated structures. Molecular docking showed that nobilamide B had the highest binding affinity (-5.83 kcal/mol) towards the wild-type. Whereas, isoquinoline analogue displayed highest binding potency with the variant TRPV1 (-11.65 kcal/mol). Besides those, C18H15F3N4O showed affinity towards both wild-type (-5.53 kcal/mol) and variant TRPV1 (-9.75 kcal/mol). Then, molecular dynamic simulation revealed stable conformation in wild-type and variant TRPV1 upon binding of nobilmaide B, isoquinoline analogue and C18H15F3N4O. Additionally, density functional theory (DFT) using B3LYP hybrid function showed high chemical reactiveness of nobilamie B, isoquinoline analogue and C18H15F3N4O. Overall, our systematic investigations provide, C18H15F3N4O could be a potential analgesic inhibiting both wild-type and variant TRPV1 against inflammatory conditions.

3.
OMICS ; 27(5): 237-244, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37140561

RESUMO

COVID-19 caused by the SARS-CoV-2 infection is a systemic disease that affects multiple organs, biological pathways, and cell types. A systems biology approach would benefit the study of COVID-19 in the pandemic as well as the endemic state. Notably, patients with COVID-19 have dysbiosis of lung microbiota whose functional relevance to the host is largely unknown. We carried out a systems biology investigation of the impact of lung microbiome-derived metabolites on host immune system during COVID-19. RNAseq was performed to identify the host-specific pro- and anti-inflammatory differentially expressed genes (DEGs) in bronchial epithelium and alveolar cells during SARS-CoV-2 infection. The overlapping DEGs were harnessed to construct an immune network while their key transcriptional regulator was deciphered. We identified 68 overlapping genes from both cell types to construct the immune network, and Signal Transducer and Activator of Transcription 3 (STAT3) was found to regulate the majority of the network proteins. Furthermore, thymidine diphosphate produced from the lung microbiome had the highest affinity with STAT3 (-6.349 kcal/mol) than the known STAT3 inhibitors (n = 410), with an affinity ranging from -5.39 to 1.31 kcal/mol. In addition, the molecular dynamic studies showed distinguishable changes in the behavior of the STAT3 complex when compared with free STAT3. Overall, our results provide new observations on the importance of lung microbiome metabolites that regulate the host immune system in patients with COVID-19, and may open up new avenues for preventive medicine and therapeutics innovation.


Assuntos
COVID-19 , Microbiota , Humanos , SARS-CoV-2 , Fator de Transcrição STAT3/genética , Pulmão
4.
J Infect Public Health ; 15(6): 662-669, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35617830

RESUMO

BACKGROUND: SARS-CoV-2, an emerged strain of corona virus family became almost serious health concern worldwide. Despite vaccines availability, reports suggest the occurrence of SARS-CoV-2 infection even in a vaccinated population. With frequent evolution and expected multiple COVID-19 waves, improved preventive, diagnostic, and treatment measures are required. In recent times, phytochemicals have gained attention due to their therapeutic characteristics and are suggested as alternative and complementary treatments for infectious diseases. This present study aimed to identify potential inhibitors against reported protein targets of SARS-CoV-2. METHODOLOGY: We computationally investigated potential SARS-CoV-2 protein targets from the literature and collected druggable phytochemicals from Indian Medicinal Plants, Phytochemistry and Therapeutics (IMPPAT) database. Further, we implemented a systematic workflow of molecular docking, dynamic simulations and generalized born surface area free-energy calculations (MM-GBSA). RESULTS: Extensive literature search and assessment of 1508 articles identifies 13 potential SARS-CoV-2 protein targets. We screened 501 druggable phytochemicals with proven biological activities. Analysis of 6513(501 *13) docked phytochemicals complex, 26 were efficient against SARS-CoV-2. Amongst, 4,8-dihydroxysesamin and arboreal from Gmelina arborea were ranked potential against most of the targets with binding energy ranging between - 10.7 to - 8.2 kcal/mol. Additionally, comparative docking with known drugs such as arbidol (-6.6 to -5.1 kcal/mol), favipiravir (-5.5 to -4.5 kcal/mol), hydroxychloroquine (-6.5 to -5.1 kcal/mol), and remedesivir (-8.0 to -5.3 kcal/mol) revealed equal/less affinity than 4,8-dihydroxysesamin and arboreal. Interestingly, the nucleocapsid target was found commonly inhibited by 4,8-dihydroxysesamin and arboreal. Molecular dynamic simulation and Molecular mechanics generalized born surface area (MM-GBSA)calculations reflect that both the compounds possess high inhibiting potential against SARS-CoV-2 including the recently emerged Omicron variant (B.1.1.529). CONCLUSION: Overall our study imparts the usage of phytochemicals as antiviral agents for SARS-CoV-2 infection. Additional in vitro and in vivo testing of these phytochemicals is required to confirm their potency.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Antivirais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...