Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018267

RESUMO

Realizing the promise of chiral inorganic nanomaterials hinges on improving their structural stability under various chemical and environmental conditions. Here, we examine the stability of 1-D gold nanoparticle (Au NP) single helices prepared using the amphiphilic peptide conjugate Cx-(PEPAuM-ox)2 (PEPAuM-ox = AYSSGAPPMoxPPF; x = 16-22). We present a general template-independent strategy of tuning helix stability that relies on controlling the dimensions of constituent NPs. As NP dimensions increase, Au NP single helices become both more thermally stable and more stable in the presence of chemical denaturants and protein digestion agents (e.g., urea and proteinase K, respectively). We use this strategy for imparting helix stability to create colloidal suspensions of thermally robust Au NP single helices which maintain their plasmonic chiroptical activity up to ∼80 °C.

2.
J Chem Phys ; 161(3)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39007390

RESUMO

Metal-organic frameworks (MOFs) are promising candidate materials for photo-driven processes. Their crystalline and tunable structure makes them well-suited for placing photoactive molecules at controlled distances and orientations that support processes such as light harvesting and photocatalysis. In order to optimize their performance, it is important to understand how these molecules evolve shortly after photoexcitation. Here, we use resonance Raman intensity analysis (RRIA) to quantify the excited state nuclear distortions of four modified UiO-68 MOFs. We find that stretching vibrations localized on the central ring within the terphenyl linker are most distorted upon interaction with light. We use a combined computational and experimental approach to create a picture of the early excited state structure of the MOFs upon photoactivation. Overall, we show that RRIA is an effective method to probe the excited state structure of photoactive MOFs and can guide the synthesis and optimization of photoactive designs.

3.
Chem Mater ; 36(3): 1773, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38370281

RESUMO

[This corrects the article DOI: 10.1021/acs.chemmater.3c01603.].

4.
J Chem Phys ; 160(4)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38294314

RESUMO

The utility of UiO-67 Metal-Organic Frameworks (MOFs) for practical applications requires a comprehensive understanding of intermolecular host-guest MOF-analyte interactions. To investigate intermolecular interactions between UiO-67 MOFs and complex molecules, it is useful to evaluate the interactions with simple polar and non-polar analytes. This problem is approached by investigating the interactions of polar (acetone and isopropanol) and non-polar (n-heptane) molecules with functionalized UiO-67 MOFs via temperature programmed desorption mass spectrometry and temperature programmed Fourier transform infrared spectroscopy. We find that isopropanol, acetone, and n-heptane bind reversibly and non-destructively to UiO-67 MOFs, where MOF and analyte functionality influence relative binding strengths (n-heptane ≈ isopropanol > acetone). During heating, all three analytes diffuse into the internal pore environment and directly interact with the µ3-OH groups located within the tetrahedral pores, evidenced by the IR response of ν(µ3-OH). We observe nonlinear changes in the infrared cross sections of the ν(CH) modes of acetone, isopropanol, and n-heptane following diffusion into UiO-67. Similarly, acetone's ν(C=O) infrared cross section increases dramatically when diffused into UiO-67. Ultimately, this in situ investigation provides insights into how individual molecular functional groups interact with UiO MOFs and enables a foundation where MOF interactions with complex molecular systems can be evaluated.

5.
ACS Appl Mater Interfaces ; 16(1): 1361-1369, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38147588

RESUMO

Single-walled carbon nanotube (SWCNT)@metal-organic framework (MOF) field-effect transistor (FET) sensors generate a signal through analytes restricting ion diffusion around the SWCNT surface. Four composites made up of SWCNTs and UiO-66, UiO-66-NH2, UiO-67, and UiO-67-CH3 were synthesized to explore the detection of norfentanyl (NF) using SWCNT@MOF FET sensors with different pore sizes. Liquid-gated FET devices of SWCNT@UiO-67 showed the highest sensing response toward NF, whereas SWCNT@UiO-66 and SWCNT@UiO-66-NH2 devices showed no sensitivity improvement compared to bare SWCNT. Comparing SWCNT@UiO-67 and SWCNT@UiO-67-CH3 indicated that the sensing response is modulated by not only the size-matching between NF and MOF channel but also NF diffusion within the MOF channel. Additionally, other drug metabolites, including norhydrocodone (NH), benzoylecgonine (BZ), and normorphine (NM) were tested with the SWCNT@UiO-67 sensor. The sensor was not responding toward NH and or BZ but a similar sensing result toward NM because NM has a similar size to NF. The SWCNT@MOF FET sensor can avoid interference from bigger molecules but sensor arrays with different pore sizes and chemistries are needed to improve the specificity.

6.
Chem Mater ; 35(13): 5071-5078, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37456597

RESUMO

Peptide-based methods have proven useful for constructing helical gold nanoparticle superstructures that exhibit strong plasmonic chiroptical activity. Superstructure syntheses using the amphiphilic peptide conjugate C16-(AYSSGAPPMoxPPF)2 typically yield 1D helices with a broad length distribution. In this study, we introduce a molecular modulator approach for controlling helix length. It represents a first step toward achieving narrowly disperse populations of single helices fabricated using peptide-based methods. Varying amounts of modulator, C16-(AYSSGA)2, were added to C16-(AYSSGAPPMoxPPF)2-based single-helix syntheses, resulting in decreased helix length and narrowing of the helix length distribution. Kinetic studies of fiber assembly were performed to investigate the mechanism by which the modulator affects helix length. It was found that the modulator leads to rapid peptide conjugate nucleation and fiber growth, which in turn results in large amounts of short fibers that serve as the underlying scaffold for the single-helix superstructures. These results constitute important advances toward generating monodisperse samples of plasmonic helical colloids.

7.
ACS Appl Mater Interfaces ; 15(19): 23337-23342, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37141279

RESUMO

Adsorption-based capture of CO2 from flue gas and from air requires materials that have a high affinity for CO2 and can resist water molecules that competitively bind to adsorption sites. Here, we present a core-shell metal-organic framework (MOF) design strategy where the core MOF is designed to selectively adsorb CO2, and the shell MOF is designed to block H2O diffusion into the core. To implement and test this strategy, we used the zirconium (Zr)-based UiO MOF platform because of its relative structural rigidity and chemical stability. Previously reported computational screening results were used to select optimal core and shell MOF compositions from a basis set of possible building blocks, and the target core-shell MOFs were prepared. Their compositions and structures were characterized using scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction. Multigas (CO2, N2, and H2O) sorption data were collected both for the core-shell MOFs and for the core and shell MOFs individually. These data were compared to determine whether the core-shell MOF architecture improved the CO2 capture performance under humid conditions. The combination of experimental and computational results demonstrated that adding a shell layer with high CO2/H2O diffusion selectivity can significantly reduce the effect of water on CO2 uptake.

8.
J Am Chem Soc ; 145(11): 6546-6553, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36912863

RESUMO

Assembling nanoparticles (NPs) into well-defined superstructures can lead to emergent collective properties that depend on their 3-D structural arrangement. Peptide conjugate molecules designed to both bind to NP surfaces and direct NP assembly have proven useful for constructing NP superstructures, and atomic- and molecular-level alterations to these conjugates have been shown to manifest in observable changes to nanoscale structure and properties. The divalent peptide conjugate, C16-(PEPAu)2 (PEPAu = AYSSGAPPMPPF), directs the formation of one-dimensional helical Au NP superstructures. This study examines how variation of the ninth amino acid residue (M), which is known to be a key Au anchoring residue, affects the structure of the helical assemblies. A series of conjugates of differential Au binding affinities based on variation of the ninth residue were designed, and Replica Exchange with Solute Tempering (REST) Molecular Dynamics simulations of the peptides on an Au(111) surface were performed to determine the approximate surface contact and to assign a binding score for each new peptide. A helical structure transition from double helices to single helices is observed as the peptide binding affinity to the Au(111) surface decreases. Accompanying this distinct structural transition is the emergence of a plasmonic chiroptical signal. REST-MD simulations were also used to predict new peptide conjugate molecules that would preferentially direct the formation of single-helical AuNP superstructures. Significantly, these findings demonstrate how small modifications to peptide precursors can be leveraged to precisely direct inorganic NP structure and assembly at the nano- and microscale, further expanding and enriching the peptide-based molecular toolkit for controlling NP superstructure assembly and properties.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Peptídeos/química , Simulação de Dinâmica Molecular
9.
J Control Release ; 352: 242-255, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36273529

RESUMO

Conventional drug delivery systems have been applied to a myriad of active ingredients but may be difficult to tailor for a given drug. Herein, we put forth a new strategy, which designs and selects the drug delivery material by considering the properties of encapsulated drugs (even multiple drugs, simultaneously). Specifically, through an in-silico screening process of 5109 MOFs using grand canonical Monte Carlo simulations, a customized MOF (referred as BIO-MOF-100) was selected and experimentally verified to be biologically stable, and capable of loading 3 anti-Tuberculosis drugs Rifampicin+Isoniazid+Pyrazinamide at 10% + 28% + 23% wt/wt (total > 50% by weight). Notably, the customized BIO-MOF-100 delivery system cleared naturally Pyrazinamide-resistant Bacillus Calmette-Guérin, reduced growth of virulent Erdman infection in macaque macrophages 10-100-fold compared to soluble drugs in vitro and was also significantly reduced Erdman growth in mice. These data suggest that the methodology of identifying-synthesizing materials can be used to generate solutions for challenging applications such as simultaneous delivery of multiple, small hydrophilic and hydrophobic molecules in the same molecular framework.


Assuntos
Sistemas de Liberação de Medicamentos , Pirazinamida , Camundongos , Animais , Preparações Farmacêuticas , Antituberculosos/uso terapêutico
10.
J Am Chem Soc ; 144(42): 19567-19575, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36228180

RESUMO

Crucial steps toward designing water sorption materials and fine-tuning their properties for specific applications include precise identification of adsorption sites and establishment of rigorous molecular-level insight into the water adsorption process. We report stepwise crystallographic mapping and density functional theory computations of adsorbed water molecules in ALP-MOF-1, a metal-organic framework decorated with distinct open metal sites and carbonyl functional groups that serve as water anchoring sites for seeding the nucleation of a complex water network. Identification of an unusual water adsorption step in ALP-MOF-1 motivated the tuning of metal ion composition to adjust water uptake. These studies provide direct evidence that the identity of the open metal sites in MOFs can dramatically affect water adsorption behavior between 0 and ∼20% RH and that multiple proximal water anchoring sites along the MOF skeleton facilitate water uptake which could be potentially useful for applications requiring rapid and energetically facile water sorption.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Adsorção , Água/química , Metais
11.
Nanoscale ; 14(43): 16085-16096, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36082903

RESUMO

Metal-organic frameworks (MOFs), along with other novel adsorbents, are frequently proposed as candidate materials to selectively adsorb CO2 for carbon capture processes. However, adsorbents designed to strongly bind CO2 nearly always bind H2O strongly (sometimes even more so). Given that water is present in significant quantities in the inlet streams of most carbon capture processes, a method that avoids H2O competition for the CO2 binding sites would be technologically valuable. In this paper, we consider a novel core-shell MOF design strategy, where a high-CO2-capacity MOF "core" is protected from competitive H2O-binding via a MOF "shell" that has very slow water diffusion. We consider a high-frequency adsorption/desorption cycle that regenerates the adsorbents before water can pass through the shell and enter the core. To identify optimal core-shell MOF pairs, we use a combination of experimental measurements, computational modeling, and multiphysics modeling. Our library of MOFs is created from two starting MOFs-UiO-66 and UiO-67-augmented with 30 possible functional group variations, yielding 1740 possible core-shell MOF pairs. After defining a performance score to rank these pairs, we identified 10 core-shell MOF candidates that significantly outperform any of the MOFs functioning alone.

12.
ChemSusChem ; 15(1): e202102217, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34725931

RESUMO

Ammonia is a widely used toxic industrial chemical that can cause severe respiratory ailments. Therefore, understanding and developing materials for its efficient capture and controlled release is necessary. One such class of materials is 3D porous metal-organic frameworks (MOFs) with exceptional surface areas and robust structures, ideal for gas storage/transport applications. Herein, interactions between ammonia and UiO-67-X (X: H, NH2 , CH3 ) zirconium MOFs were studied under cryogenic, ultrahigh vacuum (UHV) conditions using temperature-programmed desorption mass spectrometry (TPD-MS) and in-situ temperature-programmed infrared (TP-IR) spectroscopy. Ammonia was observed to interact with µ3 -OH groups present on the secondary building unit of UiO-67-X MOFs via hydrogen bonding. TP-IR studies revealed that under cryogenic UHV conditions, UiO-67-X MOFs are stable towards ammonia sorption. Interestingly, an increase in the intensity of the C-H stretching mode of the MOF linkers was detected upon ammonia exposure, attributed to NH-π interactions with linkers. These same binding interactions were observed in grand canonical Monte Carlo simulations. Based on TPD-MS, binding strength of ammonia to three MOFs was determined to be approximately 60 kJ mol-1 , suggesting physisorption of ammonia to UiO-67-X. In addition, missing linker defect sites, consisting of H2 O coordinated to Zr4+ sites, were detected through the formation of nNH3 ⋅H2 O clusters, characterized through in-situ IR spectroscopy. Structures consistent with these assignments were identified through density functional theory calculations. Tracking these bands through adsorption on thermally activated MOFs gave insight into the dehydroxylation process of UiO-67 MOFs. This highlights an advantage of using NH3 for the structural analysis of MOFs and developing an understanding of interactions between ammonia and UiO-67-X zirconium MOFs, while also providing directions for the development of stable materials for efficient toxic gas sorption.


Assuntos
Estruturas Metalorgânicas , Adsorção , Amônia , Sítios de Ligação
13.
Inorg Chem ; 60(16): 11703-11705, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34392689
14.
Inorg Chem ; 60(16): 11739-11744, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34101467

RESUMO

Metal-organic frameworks (MOFs) offer many opportunities for applications across biology and medicine. Their wide range of chemical composition makes toxicologically acceptable formulation possible, and their high level of functionality enables possible applications as delivery systems for therapeutics agents. Surface modifications have been used in drug delivery systems to minimize their interaction with the bulk, improving their specificity as targeted carriers. Herein, we discuss a strategy to achieve a tumor-targeting drug-loaded MOF using "click" chemistry to anchor functional folic acid (FA) molecules on the surface of N3-bio-MOF-100. Using curcumin (CCM) as an anticancer drug, we observed drug loading encapsulation efficiencies (DLEs) of 24.02 and 25.64% after soaking N3-bio-MOF-100 in CCM solutions for 1 day and 3 days, respectively. The success of postsynthetic modification of FA was confirmed by 1H NMR spectroscopy, Fourier transform infrared spectroscopy (FTIR), and liquid chromatography-mass spectrometry (LC-MS). The stimuli-responsive drug release studies demonstrated an increase of CCM released under acidic microenvironments. Moreover, the cell viability assay was performed on the 4T1 (breast cancer) cell line in the presence of CCM@N3-bio-MOF-100 and CCM@N3-bio-MOF-100/FA carriers to confirm its biological compatibility. In addition, a cellular uptake study was conducted to evaluate the targeting of tumor cells.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Curcumina/química , Portadores de Fármacos/química , Estruturas Metalorgânicas/química , Terapia de Alvo Molecular , Química Click , Curcumina/farmacologia , Curcumina/uso terapêutico , Ácido Fólico/química
15.
J Am Chem Soc ; 143(21): 8022-8033, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34003001

RESUMO

Traditional chemical sensing methodologies have typically relied on the specific chemistry of the analyte for detection. Modifications to the local environment surrounding the sensor represent an alternative pathway to impart selective differentiation. Here, we present the hybridization of a 2-D metal organic framework (Cu3(HHTP)2) with single-walled carbon nanotubes (SWCNTs) as a methodology for size discrimination of carbohydrates. Synthesis and the resulting conductive performance are modulated by both mass loading of SWCNTs and their relative oxidation. Liquid gated field-effect transistor (FET) devices demonstrate improved on/off characteristics and differentiation of carbohydrates based on molecular size. Glucose molecule detection is limited to the single micromolar concentration range. Molecular Dynamics (MD) calculations on model systems revealed decreases in ion diffusivity in the presence of different sugars as well as packing differences based on the size of a given carbohydrate molecule. The proposed sensing mechanism is a reduction in gate capacitance initiated by the filling of the pores with carbohydrate molecules. Restricting diffusion around a sensor in combination with FET measurements represents a new type of sensing mechanism for chemically similar analytes.

16.
ACS Appl Mater Interfaces ; 13(13): 15482-15489, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33780621

RESUMO

In this work, we demonstrate a facile synthesis of UiO-66-NH2 metal-organic framework (MOF)/oxidized single-walled carbon nanotubes (ox-SWCNTs) composite at room temperature. Acetic acid (HAc) was used as a modulator to manipulate the morphology of the MOF in these composites. With a zirconium oxide cluster (Zr) to 2-aminoteraphthalate linker (ATA) 1:1.42 ratio and acetic acid modulator, we achieved predominately heterogeneous MOF growth on the sidewalls of CNTs. Understanding the growth mechanism of these composites was facilitated by conducting DFT calculations to investigate the interactions between ox-SWCNTs and the MOF precursors. The synthesized composites combine both microporosity of the MOF and electrical conductivity of the SWCNTs. Gas sensing tests demonstrated higher response for UiO-66-NH2/ox-SWCNT hybrid toward dry air saturated with dimethyl methylphosphonate (DMMP) vapor compared to oxidized single-walled carbon nanotubes (ox-SWCNTs) alone.

17.
Dalton Trans ; 50(9): 3116-3120, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33565539

RESUMO

The kinetics of hydrolysis of dimethyl nitrophenyl phosphate (DMNP), a simulant of the nerve agent Soman, was studied and revealed transition metal salts as catalysts. The relative rates of DMNP hydrolysis by zirconium and hafnium chlorides are in accordance with their Lewis acidity. In situ conversion of zirconium chloride to zirconium oxy-hydroxide was identified as the key step. We propose a precursor-MOF activity relationship.

18.
Biochemistry ; 60(13): 1044-1049, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32510207

RESUMO

Peptide conjugate molecules comprising a gold-binding peptide (e.g., AYSSGAPPMPPF) attached to an aliphatic tail have proven to be powerful agents for directing the synthesis and assembly of gold nanoparticle superstructures, in particular chiral helices having interesting plasmonic chiroptical properties. The composition and structure of these molecular agents can be tailored to carefully tune the structure and properties of gold nanoparticle single and double helices. To date, modifications to the ß-sheet region (AYSSGA) of the peptide sequence have not been exploited to control the metrics and assembly of such superstructures. We report here that systematic peptide sequence variation in a series of gold-binding peptide conjugate molecules can be leveraged not only to affect the assembly of peptide conjugates but also to control the synthesis, assembly, and optical properties of gold nanoparticle superstructures. Depending upon the hydrophobicity of a single-amino acid variant, the conjugates yield either dispersed gold nanoparticles or helical superstructures. These results provide evidence that subtle changes to peptide sequence, via single-amino acid variation in the ß-sheet region, can be leveraged to program structural control in chiral gold nanoparticle superstructures.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Peptídeos/química , Sequência de Aminoácidos , Modelos Moleculares , Conformação Proteica em Folha beta
19.
J Am Chem Soc ; 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33170677

RESUMO

Atom-by-atom manipulation on metal nanoclusters (NCs) has long been desired, as the resulting series of NCs can provide insightful understanding of how a single atom affects the structure and properties as well as the evolution with size. Here, we report crystallizations of Au22(SAdm)16 and Au22Cd1(SAdm)16 (SAdm = adamantanethiolate) which link up with Au21(SAdm)15 and Au24(SAdm)16 NCs and form an atom-by-atom evolving series protected by the same ligand. Structurally, Au22(SAdm)16 has an Au3(SAdm)4 surface motif which is longer than the Au2(SAdm)3 on Au21(SAdm)15, whereas Au22Cd1(SAdm)16 lacks one staple Au atom compared to Au24(SAdm)16 and thus the surface structure is reconstructed. A single Cd atom triggers the structural transition from Au22 with a 10-atom bioctahedral kernel to Au22Cd1 with a 13-atom cuboctahedral kernel, and correspondingly, the optical properties are dramatically changed. The photoexcited carrier lifetime demonstrates that the optical properties and excited state relaxation are highly sensitive at the single atom level. By contrast, little change in both ionization potential and electron affinity is found in this series of NCs by theoretical calculations, indicating the electronic properties are independent of adding a single atom in this series. The work provides a paradigm that the NCs with continuous metal atom numbers are accessible and crystallizable when meticulously designed, and the optical properties are more affected at the single atom level than the electronic properties.

20.
J Phys Chem Lett ; 11(17): 7307-7312, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32787300

RESUMO

Understanding the formation of face-centered cubic (fcc) nanostructures at the atomic level remains a major task. With atomically precise nanoclusters (NCs) as model systems, herein we devised an atom-tracing strategy by heteroatom doping into Au30(SR)18 (SR = S-tC4H9) to label the specific positions in M30(SR)18 NCs (M = Au/Ag), which clearly reveals the dimeric nature of M30. Interestingly, the specific position is also consistent with the Ag-doping site in M21(SR)15. Electronic orbital analysis shows intrinsic orbital localization at the two specific positions in M30, which are decisive to the electronic structure of M30, regardless of Au or Ag occupancy. The fcc dimeric NC, which would not be discovered without Ag tracing, provides a possible explanation for the wide accessibility of nonsuperatomic Au-SR NCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...