Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 6(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36446521

RESUMO

Autophagy is essential for neuronal development and its deregulation contributes to neurodegenerative diseases. NDR1 and NDR2 are highly conserved kinases, implicated in neuronal development, mitochondrial health and autophagy, but how they affect mammalian brain development in vivo is not known. Using single and double Ndr1/2 knockout mouse models, we show that only dual loss of Ndr1/2 in neurons causes neurodegeneration. This phenotype was present when NDR kinases were deleted both during embryonic development, as well as in adult mice. Proteomic and phosphoproteomic comparisons between Ndr1/2 knockout and control brains revealed novel kinase substrates and indicated that endocytosis is significantly affected in the absence of NDR1/2. We validated the endocytic protein Raph1/Lpd1, as a novel NDR1/2 substrate, and showed that both NDR1/2 and Raph1 are critical for endocytosis and membrane recycling. In NDR1/2 knockout brains, we observed prominent accumulation of transferrin receptor, p62 and ubiquitinated proteins, indicative of a major impairment of protein homeostasis. Furthermore, the levels of LC3-positive autophagosomes were reduced in knockout neurons, implying that reduced autophagy efficiency mediates p62 accumulation and neurotoxicity. Mechanistically, pronounced mislocalisation of the transmembrane autophagy protein ATG9A at the neuronal periphery, impaired axonal ATG9A trafficking and increased ATG9A surface levels further confirm defects in membrane trafficking, and could underlie the impairment in autophagy. We provide novel insight into the roles of NDR1/2 kinases in maintaining neuronal health.


Assuntos
Autofagia , Proteômica , Feminino , Gravidez , Animais , Camundongos , Autofagossomos , Neurônios , Proteostase , Proteínas de Membrana/genética , Mamíferos
2.
Prog Neuropsychopharmacol Biol Psychiatry ; 84(Pt B): 343-352, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29241837

RESUMO

Neuronal morphogenesis and synapse development is essential for building a functioning nervous system, and defects in these processes are associated with neurological disorders. Our understanding of molecular components and signalling events that contribute to neuronal development and pathogenesis is limited. Genes associated with neurodevelopmental and neurodegenerative diseases provide entry points for elucidating molecular events that contribute to these conditions. Several protein kinases, enzymes that regulate protein function by phosphorylating their substrates, are genetically linked to neurological disorders. Identifying substrates of these kinases is key to discovering their function and providing insight for possible therapies. In this review, we describe how various methods for kinase-substrate identification helped elucidate kinase signalling pathways important for neuronal development and function. We describe recent advances on roles of kinases TAOK2, TNIK and CDKL5 in neuronal development and the converging pathways of LRRK2, PINK1 and GAK in Parkinson's Disease.


Assuntos
Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Neurônios/patologia , Fosfotransferases/metabolismo , Sinapses/metabolismo , Animais , Humanos , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...