Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(2): e54203, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23408937

RESUMO

Tissue plasminogen activator (tPA) is the only FDA-approved treatment for reperfusing ischemic strokes. But widespread use of tPA is still limited by fears of inadvertently administering tPA in patients with intracerebral hemorrhage (ICH). Surprisingly, however, the assumption that tPA will worsen ICH has never been biologically tested. Here, we assessed the effects of tPA in two models of ICH. In a mouse model of collagenase-induced ICH, hemorrhage volumes and neurological deficits after 24 hrs were similar in saline controls and tPA-treated mice, whereas heparin-treated mice had 3-fold larger hematomas. In a model of laser-induced vessel rupture, tPA also did not worsen hemorrhage volumes, while heparin did. tPA is known to worsen neurovascular injury by amplifying matrix metalloproteinases during cerebral ischemia. In contrast, tPA did not upregulate matrix metalloproteinases in our mouse ICH models. In summary, our experimental data do not support the assumption that intravenous tPA has a deleterious effect in acute ICH. However, due to potential species differences and the inability of models to fully capture the dynamics of human ICH, caution is warranted when considering the implications of these findings for human therapy.


Assuntos
Hemorragia Cerebral/patologia , Ativador de Plasminogênio Tecidual/uso terapêutico , Animais , Estudos de Casos e Controles , Masculino , Camundongos
2.
PLoS One ; 6(10): e26612, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22028924

RESUMO

Microhemorrhages are common in the aging brain, and their incidence is correlated with increased risk of neurodegenerative disease. Past work has shown that occlusion of individual cortical microvessels as well as large-scale hemorrhages can lead to degeneration of neurons and increased inflammation. Using two-photon excited fluorescence microscopy in anesthetized mice, we characterized the acute and chronic dynamics of vessel bleeding, tissue compression, blood flow change, neural degeneration, and inflammation following a microhemorrhage caused by rupturing a single penetrating arteriole with tightly-focused femtosecond laser pulses. We quantified the extravasation of red blood cells (RBCs) and blood plasma into the brain and determined that the bleeding was limited by clotting. The vascular bleeding formed a RBC-filled core that compressed the surrounding parenchymal tissue, but this compression was not sufficient to crush nearby brain capillaries, although blood flow speeds in these vessels was reduced by 20%. Imaging of cortical dendrites revealed no degeneration of the large-scale structure of the dendritic arbor up to 14 days after the microhemorrhage. Dendrites close to the RBC core were displaced by extravasating RBCs but began to relax back one day after the lesion. Finally, we observed a rapid inflammatory response characterized by morphology changes in microglia/macrophages up to 200 µm from the microhemorrhage as well as extension of cellular processes into the RBC core. This inflammation persisted over seven days. Taken together, our data suggest that a cortical microhemorrhage does not directly cause significant neural pathology but does trigger a sustained, local inflammatory response.


Assuntos
Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Hemorragia Cerebral/patologia , Hemorragia Cerebral/fisiopatologia , Dendritos/patologia , Animais , Arteríolas/metabolismo , Astrócitos/metabolismo , Coagulação Sanguínea , Contagem de Células , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/metabolismo , Hemorragia Cerebral/etiologia , Hemorragia Cerebral/metabolismo , Circulação Cerebrovascular , Eritrócitos/metabolismo , Feminino , Proteína Glial Fibrilar Ácida , Hematoma/metabolismo , Hematoma/patologia , Hematoma/fisiopatologia , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/fisiopatologia , Terapia a Laser/efeitos adversos , Macrófagos/imunologia , Masculino , Camundongos , Microglia/patologia , Proteínas do Tecido Nervoso/metabolismo , Plasma/metabolismo , Fatores de Tempo , Regulação para Cima
3.
J Cereb Blood Flow Metab ; 30(12): 1914-27, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20842163

RESUMO

Occlusions of penetrating arterioles, which plunge into cortex and feed capillary beds, cause severe decreases in blood flow and are potential causes of ischemic microlesions. However, surrounding arterioles and capillary beds remain flowing and might provide collateral flow around the occlusion. We used femtosecond laser ablation to trigger clotting in single penetrating arterioles in rat cortex and two-photon microscopy to measure changes in microvessel diameter and red blood cell speed after the clot. We found that after occlusion of a single penetrating arteriole, nearby penetrating and surface arterioles did not dilate, suggesting that alternate blood flow routes are not actively recruited. In contrast, capillaries showed two types of reactions. Capillaries directly downstream from the occluded arteriole dilated after the clot, but other capillaries in the same vicinity did not dilate. This heterogeneity in capillary response suggests that signals for vasodilation are vascular rather than parenchymal in origin. Although both neighboring arterioles and capillaries dilated in response to topically applied acetylcholine after the occlusion, the flow in the territory of the occluded arteriole did not improve. Collateral flow from neighboring penetrating arterioles is neither actively recruited nor effective in improving blood flow after the occlusion of a single penetrating arteriole.


Assuntos
Encéfalo/irrigação sanguínea , Trombose Intracraniana , Acetilcolina/farmacologia , Animais , Arteríolas/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...