Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ontogenez ; 48(1): 63-72, 2017.
Artigo em Russo | MEDLINE | ID: mdl-30277222

RESUMO

In this study, modern techniques of laser microsurgery of cell spheroids have been used to develop a new simple, reproducible model for studying the mechanisms of repair and regeneration in vitro. Nanosecond laser pulses were applied to perform a microdissection of the outer and the inner zones of the spheroids from dermal fibroblasts. To achieve effective dissection and preservation of spheroid viability, the optimal parameters were chosen: 355 nm wavelength, 100 Hz frequency, 2 ns pulse duration, laser pulses in the range of 7­9 µ J. After microdissection, we observed injury of the spheroids : the edges of the wound surface opened and the angular opening reached a value of more than 180°. As early as during the first hour after spheroid microdissection with laser radiation, the surviving cells changed their shape: cells on the spheroid surface and directly in the damaged area became rounded. One day after microdissection, the structure of the spheroids began to partially recover, the cells in the surface layers began to take the original flattened shape; debris of dead damaged cells and their fragments was gradually cleared from the spheroid composition. In the proposed model, the first data on stimulation of structure recovery of injured spheroids from dermal fibroblasts with a P199 synthetic polypeptide, which is used in cosmetology for the initiation of antiaging and regenerative effects in the skin, were received. After microdissection, recovery of the spheroids structure with a few surface layers of flattened imbricated arranged cells and polygonal cells of the inner zone in the presence of P199 peptide was faster than in the control group, and was completed within 7 days, presumably due to the remodeling of the survived cells.


Assuntos
Terapia a Laser/métodos , Microcirurgia/métodos , Modelos Biológicos , Regeneração , Esferoides Celulares/metabolismo , Humanos , Terapia a Laser/instrumentação , Microcirurgia/instrumentação , Esferoides Celulares/citologia
2.
Biol Open ; 5(7): 993-1000, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27334698

RESUMO

Modern techniques of laser microsurgery of cell spheroids were used to develop a new simple reproducible model for studying repair and regeneration in vitro Nanosecond laser pulses (wavelength 355 nm, frequency 100 Hz, pulse duration 2 ns) were applied to perform a microdissection of the outer and the inner zones of human bone marrow multipotent mesenchymal stromal cells (BM MMSC) spheroids. To achieve effective dissection and preservation of spheroid viability, the energy of laser pulses was optimized and adjusted in the range 7-9 µJ. After microdissection, the edges of the wound surface opened and the angular opening reached a value of more than 180°. The destruction of the initial spheroid structure was observed in the wound area, with surviving cells changing their shape into a round one. Partial restoration of a spheroid form took place in the first six hours. The complete structure restoration accompanying the reparative processes occurred gradually over seven days due to remodelling of surviving cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...