Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38918881

RESUMO

Elaeis guineensis and E. oleifera are the two species of oil palm. E. guineensis is the most widely cultivated commercial species, and introgression of desirable traits from E. oleifera is ongoing. We report an improved E. guineensis genome assembly with substantially increased continuity and completeness, as well as the first chromosome-scale E. oleifera genome assembly. Each assembly was obtained by integration of long-read sequencing, proximity ligation sequencing, optical mapping and genetic mapping. High interspecific genome conservation is observed between the two species. The study provides the most extensive gene annotation to date, including 46,697 E. guineensis and 38,658 E. oleifera gene predictions. Analyses of repetitive element families further resolve the DNA repeat architecture of both genomes. Comparative genomic analyses identified experimentally validated small structural variants between the oil palm species and resolved the mechanism of chromosomal fusions responsible for the evolutionary descending dysploidy from 18 to 16 chromosomes.

2.
Comput Biol Chem ; 102: 107801, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36528019

RESUMO

A high-quality reference genome is an important resource that can help decipher the genetic basis of traits in combination with linkage or association analyses. The publicly available oil palm draft genome sequence of AVROS pisifera (EG5) accounts for 1.535 Gb of the 1.8 Gb oil palm genome. However, the assemblies are fragmented, and the earlier assembly only had 43% of the sequences placed on pseudo-chromosomes. By integrating a number of SNP and SSR-based genetic maps, a consensus map (AM_EG5.1), comprising of 828.243 Mb genomic scaffolds anchored to 16 pseudo-chromosomes, was generated. This accounted for 54% of the genome assembly, which is a significant improvement to the original assembly. The total length of N50 scaffolds anchored to the pseudo-chromosomes increased by ∼18% compared to the previous assembly. A total of 139 quantitative trait loci for agronomically important quantitative traits, sourced from literature, were successfully mapped on the new pseudo-chromosomes. The improved assembly could also be used as a reference to identify potential errors in placement of specific markers in the linkage groups of the genetic maps used to assemble the consensus map. The 3422 unique markers from five genetic maps, anchored to the pseudo-chromosomes of AM_EG5.1, are an important resource that can be used preferentially to either construct new maps or fill gaps in existing genetic maps. Synteny analysis further revealed that the AM_EG5.1 had high collinearity with the date palm genome cultivar 'Barhee BC4' and shared most of its segmental duplications. This improved chromosomal-level genome is a valuable resource for genetic research in oil palm.


Assuntos
Arecaceae , Locos de Características Quantitativas , Mapeamento Cromossômico , Consenso , Ligação Genética , Genômica , Arecaceae/genética , Genoma de Planta/genética , Repetições de Microssatélites
3.
Plant Cell Physiol ; 61(4): 735-747, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31883014

RESUMO

Acyl-CoA-binding proteins (ACBPs) are involved in binding and trafficking acyl-CoA esters in eukaryotic cells. ACBPs contain a well-conserved acyl-CoA-binding domain. Their various functions have been characterized in the model plant Arabidopsis and, to a lesser extent, in rice. In this study, genome-wide detection and expression analysis of ACBPs were performed on Elaeis guineensis (oil palm), the most important oil crop in the world. Seven E. guineensis ACBPs were identified and classified into four groups according to their deduced amino acid domain organization. Phylogenetic analysis showed conservation of this family with other higher plants. All seven EgACBPs were expressed in most tissues while their differential expression suggests various functions in specific tissues. For example, EgACBP3 had high expression in inflorescences and stalks while EgACBP1 showed strong expression in leaves. Because of the importance of E. guineensis as an oil crop, expression of EgACBPs was specifically examined during fruit development. EgACBP3 showed high expression throughout mesocarp development, while EgACBP1 had enhanced expression during rapid oil synthesis. In endosperm, both EgACBP1 and EgACBP3 exhibited increased expression during seed development. These results provide important information for further investigations on the biological functions of EgACBPs in various tissues and, in particular, their roles in oil synthesis.


Assuntos
Inibidor da Ligação a Diazepam/genética , Regulação da Expressão Gênica de Plantas , Óleo de Palmeira/metabolismo , Proteínas de Plantas/genética , Sequência de Aminoácidos , Arecaceae/genética , Arecaceae/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Endosperma/metabolismo , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Transcriptoma
4.
Database (Oxford) ; 20182018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239681

RESUMO

A set of Elaeis guineensis genes had been generated by combining two gene prediction pipelines: Fgenesh++ developed by Softberry and Seqping by the Malaysian Palm Oil Board. PalmXplore was developed to provide a scalable data repository and a user-friendly search engine system to efficiently store, manage and retrieve the oil palm gene sequences and annotations. Information deposited in PalmXplore includes predicted genes, their genomic coordinates, as well as the annotations derived from external databases, such as Pfam, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Information about genes related to important traits, such as those involved in fatty acid biosynthesis (FAB) and disease resistance, is also provided. The system offers Basic Local Alignment Search Tool homology search, where the results can be downloaded or visualized in the oil palm genome browser (MYPalmViewer). PalmXplore is regularly updated offering new features, improvements to genome annotation and new genomic sequences. The system is freely accessible at http://palmxplore.mpob.gov.my.


Assuntos
Arecaceae/genética , Bases de Dados Genéticas , Óleo de Palmeira/metabolismo , Biologia Computacional , Ontologia Genética , Armazenamento e Recuperação da Informação , Anotação de Sequência Molecular
5.
Plant Sci ; 275: 84-96, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30107884

RESUMO

The diacylglycerol acyltransferases (DGAT) (diacylglycerol:acyl-CoA acyltransferase, EC 2.3.1.20) are a key group of enzymes that catalyse the final and usually the most important rate-limiting step of triacylglycerol biosynthesis in plants and other organisms. Genes encoding four distinct functional families of DGAT enzymes have been characterised in the genome of the African oil palm, Elaeis guineensis. The contrasting features of the various isoforms within the four families of DGAT genes, namely DGAT1, DGAT2, DGAT3 and WS/DGAT are presented both in the oil palm itself and, for comparative purposes, in 12 other oil crop or model/related plants, namely Arabidopsis thaliana, Brachypodium distachyon, Brassica napus, Elaeis oleifera, Glycine max, Gossypium hirsutum, Helianthus annuus, Musa acuminata, Oryza sativa, Phoenix dactylifera, Sorghum bicolor, and Zea mays. The oil palm genome contains respectively three, two, two and two distinctly expressed functional copies of the DGAT1, DGAT2, DGAT3 and WS/DGAT genes. Phylogenetic analyses of the four DGAT families showed that the E. guineensis genes tend to cluster with sequences from P. dactylifera and M. acuminata rather than with other members of the Commelinid monocots group, such as the Poales which include the major cereal crops such as rice and maize. Comparison of the predicted DGAT protein sequences with other animal and plant DGATs was consistent with the E. guineensis DGAT1 being ER located with its active site facing the lumen while DGAT2, although also ER located, had a predicted cytosol-facing active site. In contrast, DGAT3 and some (but not all) WS/DGAT in E. guineensis are predicted to be soluble, cytosolic enzymes. Evaluation of E. guineensis DGAT gene expression in different tissues and developmental stages suggests that the four DGAT groups have distinctive physiological roles and are particularly prominent in developmental processes relating to reproduction, such as flowering, and in fruit/seed formation especially in the mesocarp and endosperm tissues.


Assuntos
Arecaceae/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Arecaceae/enzimologia , Arecaceae/genética , Simulação por Computador , Diacilglicerol O-Aciltransferase/genética , Perfilação da Expressão Gênica , Genes de Plantas/genética , Filogenia , Análise de Sequência de DNA
6.
PLoS One ; 13(5): e0196669, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29771926

RESUMO

Bioinformatics analyses of caleosin/peroxygenases (CLO/PXG) demonstrated that these genes are present in the vast majority of Viridiplantae taxa for which sequence data are available. Functionally active CLO/PXG proteins with roles in abiotic stress tolerance and lipid droplet storage are present in some Trebouxiophycean and Chlorophycean green algae but are absent from the small number of sequenced Prasinophyceaen genomes. CLO/PXG-like genes are expressed during dehydration stress in Charophyte algae, a sister clade of the land plants (Embryophyta). CLO/PXG-like sequences are also present in all of the >300 sequenced Embryophyte genomes, where some species contain as many as 10-12 genes that have arisen via selective gene duplication. Angiosperm genomes harbour at least one copy each of two distinct CLO/PX isoforms, termed H (high) and L (low), where H-forms contain an additional C-terminal motif of about 30-50 residues that is absent from L-forms. In contrast, species in other Viridiplantae taxa, including green algae, non-vascular plants, ferns and gymnosperms, contain only one (or occasionally both) of these isoforms per genome. Transcriptome and biochemical data show that CLO/PXG-like genes have complex patterns of developmental and tissue-specific expression. CLO/PXG proteins can associate with cytosolic lipid droplets and/or bilayer membranes. Many of the analysed isoforms also have peroxygenase activity and are involved in oxylipin metabolism. The distribution of CLO/PXG-like genes is consistent with an origin >1 billion years ago in at least two of the earliest diverging groups of the Viridiplantae, namely the Chlorophyta and the Streptophyta, after the Viridiplantae had already diverged from other Archaeplastidal groups such as the Rhodophyta and Glaucophyta. While algal CLO/PXGs have roles in lipid packaging and stress responses, the Embryophyte proteins have a much wider spectrum of roles and may have been instrumental in the colonisation of terrestrial habitats and the subsequent diversification as the major land flora.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Genoma/genética , Oxigenases de Função Mista/genética , Proteínas de Plantas/genética , Viridiplantae/genética , Sequência de Aminoácidos , Clorófitas/genética , Biologia Computacional/métodos , Evolução Molecular , Genômica/métodos , Oxilipinas/metabolismo , Filogenia , Estresse Fisiológico/genética , Transcriptoma/genética
7.
PLoS One ; 13(4): e0194792, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29672525

RESUMO

Comparative genomics and transcriptomic analyses were performed on two agronomically important groups of genes from oil palm versus other major crop species and the model organism, Arabidopsis thaliana. The first analysis was of two gene families with key roles in regulation of oil quality and in particular the accumulation of oleic acid, namely stearoyl ACP desaturases (SAD) and acyl-acyl carrier protein (ACP) thioesterases (FAT). In both cases, these were found to be large gene families with complex expression profiles across a wide range of tissue types and developmental stages. The detailed classification of the oil palm SAD and FAT genes has enabled the updating of the latest version of the oil palm gene model. The second analysis focused on disease resistance (R) genes in order to elucidate possible candidates for breeding of pathogen tolerance/resistance. Ortholog analysis showed that 141 out of the 210 putative oil palm R genes had homologs in banana and rice. These genes formed 37 clusters with 634 orthologous genes. Classification of the 141 oil palm R genes showed that the genes belong to the Kinase (7), CNL (95), MLO-like (8), RLK (3) and Others (28) categories. The CNL R genes formed eight clusters. Expression data for selected R genes also identified potential candidates for breeding of disease resistance traits. Furthermore, these findings can provide information about the species evolution as well as the identification of agronomically important genes in oil palm and other major crops.


Assuntos
Arecaceae/genética , Resistência à Doença/genética , Ácidos Graxos/biossíntese , Perfilação da Expressão Gênica , Genômica , Doenças das Plantas/genética , Transcriptoma , Biologia Computacional/métodos , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genômica/métodos , Redes e Vias Metabólicas , Filogenia
8.
Biol Direct ; 12(1): 21, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28886750

RESUMO

BACKGROUND: Oil palm is an important source of edible oil. The importance of the crop, as well as its long breeding cycle (10-12 years) has led to the sequencing of its genome in 2013 to pave the way for genomics-guided breeding. Nevertheless, the first set of gene predictions, although useful, had many fragmented genes. Classification and characterization of genes associated with traits of interest, such as those for fatty acid biosynthesis and disease resistance, were also limited. Lipid-, especially fatty acid (FA)-related genes are of particular interest for the oil palm as they specify oil yields and quality. This paper presents the characterization of the oil palm genome using different gene prediction methods and comparative genomics analysis, identification of FA biosynthesis and disease resistance genes, and the development of an annotation database and bioinformatics tools. RESULTS: Using two independent gene-prediction pipelines, Fgenesh++ and Seqping, 26,059 oil palm genes with transcriptome and RefSeq support were identified from the oil palm genome. These coding regions of the genome have a characteristic broad distribution of GC3 (fraction of cytosine and guanine in the third position of a codon) with over half the GC3-rich genes (GC3 ≥ 0.75286) being intronless. In comparison, only one-seventh of the oil palm genes identified are intronless. Using comparative genomics analysis, characterization of conserved domains and active sites, and expression analysis, 42 key genes involved in FA biosynthesis in oil palm were identified. For three of them, namely EgFABF, EgFABH and EgFAD3, segmental duplication events were detected. Our analysis also identified 210 candidate resistance genes in six classes, grouped by their protein domain structures. CONCLUSIONS: We present an accurate and comprehensive annotation of the oil palm genome, focusing on analysis of important categories of genes (GC3-rich and intronless), as well as those associated with important functions, such as FA biosynthesis and disease resistance. The study demonstrated the advantages of having an integrated approach to gene prediction and developed a computational framework for combining multiple genome annotations. These results, available in the oil palm annotation database ( http://palmxplore.mpob.gov.my ), will provide important resources for studies on the genomes of oil palm and related crops. REVIEWERS: This article was reviewed by Alexander Kel, Igor Rogozin, and Vladimir A. Kuznetsov.


Assuntos
Arecaceae/genética , Genoma de Planta , Modelos Genéticos , Anotação de Sequência Molecular , Biologia Computacional/métodos , Genes de Plantas , Software
9.
BMC Bioinformatics ; 18(Suppl 1): 1426, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-28466793

RESUMO

BACKGROUND: Gene prediction is one of the most important steps in the genome annotation process. A large number of software tools and pipelines developed by various computing techniques are available for gene prediction. However, these systems have yet to accurately predict all or even most of the protein-coding regions. Furthermore, none of the currently available gene-finders has a universal Hidden Markov Model (HMM) that can perform gene prediction for all organisms equally well in an automatic fashion. RESULTS: We present an automated gene prediction pipeline, Seqping that uses self-training HMM models and transcriptomic data. The pipeline processes the genome and transcriptome sequences of the target species using GlimmerHMM, SNAP, and AUGUSTUS pipelines, followed by MAKER2 program to combine predictions from the three tools in association with the transcriptomic evidence. Seqping generates species-specific HMMs that are able to offer unbiased gene predictions. The pipeline was evaluated using the Oryza sativa and Arabidopsis thaliana genomes. Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis showed that the pipeline was able to identify at least 95% of BUSCO's plantae dataset. Our evaluation shows that Seqping was able to generate better gene predictions compared to three HMM-based programs (MAKER2, GlimmerHMM and AUGUSTUS) using their respective available HMMs. Seqping had the highest accuracy in rice (0.5648 for CDS, 0.4468 for exon, and 0.6695 nucleotide structure) and A. thaliana (0.5808 for CDS, 0.5955 for exon, and 0.8839 nucleotide structure). CONCLUSIONS: Seqping provides researchers a seamless pipeline to train species-specific HMMs and predict genes in newly sequenced or less-studied genomes. We conclude that the Seqping pipeline predictions are more accurate than gene predictions using the other three approaches with the default or available HMMs.


Assuntos
Perfilação da Expressão Gênica , Genoma de Planta/genética , Genômica/métodos , Software , Transcriptoma , Arabidopsis/genética , Éxons/genética , Cadeias de Markov , Oryza/genética
10.
BMC Genomics ; 17: 289, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27079197

RESUMO

BACKGROUND: The commercial oil palm (Elaeis guineensis Jacq.) produces a mesocarp oil (commonly called 'palm oil') with approximately equal proportions of saturated and unsaturated fatty acids (FAs). An increase in unsaturated FAs content or iodine value (IV) as a measure of the degree of unsaturation would help to open up new markets for the oil. One way to manipulate the fatty acid composition (FAC) in palm oil is through introgression of favourable alleles from the American oil palm, E. oleifera, which has a more unsaturated oil. RESULTS: In this study, a segregating E. oleifera x E. guineensis (OxG) hybrid population for FAC is used to identify quantitative trait loci (QTLs) linked to IV and various FAs. QTL analysis revealed 10 major and two putative QTLs for IV and six FAs, C14:0, C16:0, C16:1, C18:0, C18:1 and C18:2 distributed across six linkage groups (LGs), OT1, T2, T3, OT4, OT6 and T9. The major QTLs for IV and C16:0 on LGOT1 explained 60.0 - 69.0 % of the phenotypic trait variation and were validated in two independent BC2 populations. The genomic interval contains several key structural genes in the FA and oil biosynthesis pathways such as PATE/FATB, HIBCH, BASS2, LACS4 and DGAT1 and also a relevant transcription factor (TF), WRI1. The literature suggests that some of these genes can exhibit pleiotropic effects in the regulatory networks of these traits. Using the whole genome sequence data, markers tightly linked to the candidate genes were also developed. Clustering trait values according to the allelic forms of these candidate markers revealed significant differences in the IV and FAs of the palms in the mapping and validation crosses. CONCLUSIONS: The candidate gene approach described and exploited here is useful to identify the potential causal genes linked to FAC and can be adopted for marker-assisted selection (MAS) in oil palm.


Assuntos
Arecaceae/genética , Mapeamento Cromossômico , Ácidos Graxos/química , Locos de Características Quantitativas , Arecaceae/química , Cruzamentos Genéticos , DNA de Plantas/genética , Genes de Plantas , Marcadores Genéticos , Repetições de Microssatélites , Óleo de Palmeira , Fenótipo , Óleos de Plantas/química , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
11.
Nat Commun ; 5: 4106, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24978855

RESUMO

Oil palm, a plantation crop of major economic importance in Southeast Asia, is the predominant source of edible oil worldwide. We report the identification of the virescens (VIR) gene, which controls fruit exocarp colour and is an indicator of ripeness. VIR is a R2R3-MYB transcription factor with homology to Lilium LhMYB12 and similarity to Arabidopsis production of anthocyanin pigment1 (PAP1). We identify five independent mutant alleles of VIR in over 400 accessions from sub-Saharan Africa that account for the dominant-negative virescens phenotype. Each mutation results in premature termination of the carboxy-terminal domain of VIR, resembling McClintock's C1-I allele in maize. The abundance of alleles likely reflects cultural practices, by which fruits were venerated for magical and medicinal properties. The identification of VIR will allow selection of the trait at the seed or early-nursery stage, 3-6 years before fruits are produced, greatly advancing introgression into elite breeding material.


Assuntos
Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Nandiniidae/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Animais , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Nandiniidae/classificação , Nandiniidae/genética , Proteínas Associadas a Pancreatite , Filogenia , Proteínas de Plantas/genética , Plantas/classificação , Plantas/genética
12.
PLoS One ; 9(1): e86728, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24497974

RESUMO

Demand for palm oil has been increasing by an average of ∼8% the past decade and currently accounts for about 59% of the world's vegetable oil market. This drives the need to increase palm oil production. Nevertheless, due to the increasing need for sustainable production, it is imperative to increase productivity rather than the area cultivated. Studies on the oil palm genome are essential to help identify genes or markers that are associated with important processes or traits, such as flowering, yield and disease resistance. To achieve this, 294,115 and 150,744 sequences from the hypomethylated or gene-rich regions of Elaeis guineensis and E. oleifera genome were sequenced and assembled into contigs. An additional 16,427 shot-gun sequences and 176 bacterial artificial chromosomes (BAC) were also generated to check the quality of libraries constructed. Comparison of these sequences revealed that although the methylation-filtered libraries were sequenced at low coverage, they still tagged at least 66% of the RefSeq supported genes in the BAC and had a filtration power of at least 2.0. A total 33,752 microsatellites and 40,820 high-quality single nucleotide polymorphism (SNP) markers were identified. These represent the most comprehensive collection of microsatellites and SNPs to date and would be an important resource for genetic mapping and association studies. The gene models predicted from the assembled contigs were mined for genes of interest, and 242, 65 and 14 oil palm transcription factors, resistance genes and miRNAs were identified respectively. Examples of the transcriptional factors tagged include those associated with floral development and tissue culture, such as homeodomain proteins, MADS, Squamosa and Apetala2. The E. guineensis and E. oleifera hypomethylated sequences provide an important resource to understand the molecular mechanisms associated with important agronomic traits in oil palm.


Assuntos
Arecaceae/genética , Metilação de DNA , Genes de Plantas , Resistência à Doença/genética , Etiquetas de Sequências Expressas , Ontologia Genética , MicroRNAs/genética , Repetições de Microssatélites , Anotação de Sequência Molecular , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , RNA de Plantas/genética , Análise de Sequência de DNA , Fatores de Transcrição/genética , Transcriptoma
13.
Nature ; 500(7462): 335-9, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23883927

RESUMO

Oil palm is the most productive oil-bearing crop. Although it is planted on only 5% of the total world vegetable oil acreage, palm oil accounts for 33% of vegetable oil and 45% of edible oil worldwide, but increased cultivation competes with dwindling rainforest reserves. We report the 1.8-gigabase (Gb) genome sequence of the African oil palm Elaeis guineensis, the predominant source of worldwide oil production. A total of 1.535 Gb of assembled sequence and transcriptome data from 30 tissue types were used to predict at least 34,802 genes, including oil biosynthesis genes and homologues of WRINKLED1 (WRI1), and other transcriptional regulators, which are highly expressed in the kernel. We also report the draft sequence of the South American oil palm Elaeis oleifera, which has the same number of chromosomes (2n = 32) and produces fertile interspecific hybrids with E. guineensis but seems to have diverged in the New World. Segmental duplications of chromosome arms define the palaeotetraploid origin of palm trees. The oil palm sequence enables the discovery of genes for important traits as well as somaclonal epigenetic alterations that restrict the use of clones in commercial plantings, and should therefore help to achieve sustainability for biofuels and edible oils, reducing the rainforest footprint of this tropical plantation crop.


Assuntos
Arecaceae/classificação , Arecaceae/genética , Genoma de Planta/genética , Filogenia , Metabolismo dos Carboidratos/genética , Cromossomos de Plantas/genética , Metabolismo dos Lipídeos/genética , Modelos Genéticos , Dados de Sequência Molecular
14.
Nature ; 500(7462): 340-4, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23883930

RESUMO

A key event in the domestication and breeding of the oil palm Elaeis guineensis was loss of the thick coconut-like shell surrounding the kernel. Modern E. guineensis has three fruit forms, dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), a hybrid between dura and pisifera. The pisifera palm is usually female-sterile. The tenera palm yields far more oil than dura, and is the basis for commercial palm oil production in all of southeast Asia. Here we describe the mapping and identification of the SHELL gene responsible for the different fruit forms. Using homozygosity mapping by sequencing, we found two independent mutations in the DNA-binding domain of a homologue of the MADS-box gene SEEDSTICK (STK, also known as AGAMOUS-LIKE 11), which controls ovule identity and seed development in Arabidopsis. The SHELL gene is responsible for the tenera phenotype in both cultivated and wild palms from sub-Saharan Africa, and our findings provide a genetic explanation for the single gene hybrid vigour (or heterosis) attributed to SHELL, via heterodimerization. This gene mutation explains the single most important economic trait in oil palm, and has implications for the competing interests of global edible oil production, biofuels and rainforest conservation.


Assuntos
Arecaceae/genética , Arecaceae/metabolismo , Genes de Plantas/genética , Óleos de Plantas , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Variação Genética , Homozigoto , Proteínas de Domínio MADS/genética , Dados de Sequência Molecular , Mutação , Óleo de Palmeira , Alinhamento de Sequência
15.
Int J Mol Sci ; 13(4): 4069-4088, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22605966

RESUMO

Species-specific simple sequence repeat (SSR) markers are favored for genetic studies and marker-assisted selection (MAS) breeding for oil palm genetic improvement. This report characterizes 20 SSR markers from an Elaeis oleifera genomic library (gSSR). Characterization of the repeat type in 2000 sequences revealed a high percentage of di-nucleotides (63.6%), followed by tri-nucleotides (24.2%). Primer pairs were successfully designed for 394 of the E. oleifera gSSRs. Subsequent analysis showed the ability of the 20 selected E. oleifera gSSR markers to reveal genetic diversity in the genus Elaeis. The average Polymorphism Information Content (PIC) value for the SSRs was 0.402, with the tri-repeats showing the highest average PIC (0.626). Low values of observed heterozygosity (H(o)) (0.164) and highly positive fixation indices (F(is)) in the E. oleifera germplasm collection, compared to the E. guineensis, indicated an excess of homozygosity in E. oleifera. The transferability of the markers to closely related palms, Elaeis guineensis, Cocos nucifera and ornamental palms is also reported. Sequencing the amplicons of three selected E. oleifera gSSRs across both species and palm taxa revealed variations in the repeat-units. The study showed the potential of E. oleifera gSSR markers to reveal genetic diversity in the genus Elaeis. The markers are also a valuable genetic resource for studying E. oleifera and other genus in the Arecaceae family.


Assuntos
Arecaceae/genética , DNA de Plantas/genética , Repetições de Microssatélites/genética , Óleos de Plantas/análise , Alelos , Sequência de Bases , Primers do DNA/genética , Marcadores Genéticos/genética , Biblioteca Genômica , Dados de Sequência Molecular , Óleo de Palmeira , Polimorfismo Genético , Alinhamento de Sequência , Análise de Sequência de DNA
16.
J Genet ; 89(2): 135-45, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20861564

RESUMO

This study reports on the detection of additional expressed sequence tags (EST) derived simple sequence repeat (SSR) markers for the oil palm. A large collection of 19243 Elaeis guineensis ESTs were assembled to give 10258 unique sequences, of which 629 ESTs were found to contain 722 SSRs with a variety of motifs. Dinucleotide repeats formed the largest group (45.6%) consisting of 66.9% AG/CT, 21.9% AT/AT, 10.9% AC/GT and 0.3% CG/CG motifs. This was followed by trinucleotide repeats, which is the second most abundant repeat types (34.5%) consisting of AAG/CTT (23.3%), AGG/CCT (13.7%), CCG/CGG (11.2%), AAT/ATT (10.8%), AGC/GCT (10.0%), ACT/AGT (8.8%), ACG/CGT (7.6%), ACC/GGT (7.2%), AAC/GTT (3.6%) and AGT/ACT (3.6%) motifs. Primer pairs were designed for 405 unique EST-SSRs and 15 of these were used to genotype 105 E. guineensis and 30 E. oleifera accessions. Fourteen SSRs were polymorphic in at least one germplasm revealing a total of 101 alleles. The high percentage (78.0%) of alleles found to be specific for either E. guineensis or E. oleifera has increased the power for discriminating the two species. The estimates of genetic differentiation detected by EST-SSRs were compared to those reported previously. The transferability across palm taxa to two Cocos nucifera and six exotic palms is also presented. The polymerase chain reaction (PCR) products of three primer-pairs detected in E. guineensis, E. oleifera, C. nucifera and Jessinia bataua were cloned and sequenced. Sequence alignments showed mutations within the SSR site and the flanking regions. Phenetic analysis based on the sequence data revealed that C. nucifera is closer to oil palm compared to J. bataua; consistent with the taxanomic classification.


Assuntos
Arecaceae/genética , DNA de Plantas/genética , Etiquetas de Sequências Expressas , Variação Genética/genética , Repetições de Microssatélites/genética , África , Alelos , Ásia , Sequência de Bases , Bases de Dados de Ácidos Nucleicos , Biblioteca Genômica , Filogenia , Polimorfismo Genético , Alinhamento de Sequência , Análise de Sequência de DNA , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...