Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-15928926

RESUMO

During protein translation, a variety of quality control checks ensure that the resulting polypeptides deviate minimally from their genetic encoding template. Translational fidelity is central in order to preserve the function and integrity of each cell. Correct termination is an important aspect of translational fidelity, and a multitude of mechanisms and players participate in this exquisitely regulated process. This review explores our current understanding of eukaryotic termination by highlighting the roles of the different ribosomal components as well as termination factors and ribosome-associated proteins, such as chaperones.


Assuntos
Códon de Terminação/genética , Células Eucarióticas/metabolismo , Terminação Traducional da Cadeia Peptídica , Biossíntese de Proteínas , Ribossomos/metabolismo , Animais , Humanos , Modelos Biológicos
2.
Cell Mol Life Sci ; 59(10): 1632-9, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12475173

RESUMO

Nascent-polypeptide-associated complex (NAC) is a heterodimeric complex which can reversibly bind to eukaryotic ribosomes. NAC is located in direct proximity to newly synthesized polypeptide chains as they emerge from the ribosome. Although its function is thought to be conserved from yeast to humans our current knowledge about what NAC actually does in a living cell is incomplete. It has been suggested that NAC is a (i) dynamic component of the ribosomal exit tunnel, providing a shield for nascent polypeptides, (ii) negative regulator of translocation into the endoplasmic reticulum and (iii) positive regulator of translocation into the mitochondria. However, none of these hypotheses is generally accepted. Moreover, the individual subunits of NAC have been implicated in processes related to transcription rather than translation, and it is currently under debate whether NAC might be a protein of dual function. This review attempts to summarize the data from different fields and to discuss the partly controversial results in a common context.


Assuntos
Partícula de Reconhecimento de Sinal/metabolismo , Transativadores/genética , Transativadores/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Animais , Regulação da Expressão Gênica , Humanos , Mamíferos , Chaperonas Moleculares , Dados de Sequência Molecular , Transporte Proteico , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Partícula de Reconhecimento de Sinal/genética , Transativadores/química
3.
Cell ; 107(2): 235-46, 2001 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-11672530

RESUMO

The chaperonin GroEL binds nonnative proteins too large to fit inside the productive GroEL-GroES cis cavity, but whether and how it assists their folding has remained unanswered. We have examined yeast mitochondrial aconitase, an 82 kDa monomeric Fe(4)S(4) cluster-containing enzyme, observed to aggregate in chaperonin-deficient mitochondria. We observed that aconitase folding both in vivo and in vitro requires both GroEL and GroES, and proceeds via multiple rounds of binding and release. Unlike the folding of smaller substrates, however, this mechanism does not involve cis encapsulation but, rather, requires GroES binding to the trans ring to release nonnative substrate, which likely folds in solution. Following the phase of ATP/GroES-dependent refolding, GroEL stably bound apoaconitase, releasing active holoenzyme upon Fe(4)S(4) cofactor formation, independent of ATP and GroES.


Assuntos
Chaperonina 10/química , Chaperonina 60/química , Aconitato Hidratase/química , Trifosfato de Adenosina/metabolismo , Biotinilação , Eletroforese em Gel de Poliacrilamida , Endopeptidase K/metabolismo , Escherichia coli/química , Proteínas Fúngicas/química , Modelos Biológicos , Ligação Proteica , Dobramento de Proteína , Fatores de Tempo
4.
Proc Natl Acad Sci U S A ; 98(7): 3762-7, 2001 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-11274393

RESUMO

The yeast cytosol contains multiple homologs of the DnaK and DnaJ chaperone family. Our current understanding of which homologs functionally interact is incomplete. Zuotin is a DnaJ homolog bound to the yeast ribosome. We have now identified the DnaK homolog Ssz1p/Pdr13p as zuotin's partner chaperone. Zuotin and Ssz1p form a ribosome-associated complex (RAC) that is bound to the ribosome via the zuotin subunit. RAC is unique among the eukaryotic DnaK-DnaJ systems, as the 1:1 complex is stable, even in the presence of ATP or ADP. In vitro, RAC stimulates the translocation of a ribosome-bound mitochondrial precursor protein into mitochondria, providing evidence for its chaperone-like effect on nascent chains. In agreement with the existence of a functional complex, deletion of each RAC subunit resulted in a similar phenotype in vivo. However, overexpression of zuotin partly rescued the growth defect of the Delta ssz1 strain, whereas overexpression of Ssz1p did not affect the Delta zuo1 strain, suggesting a pivotal function for the DnaJ homolog.


Assuntos
Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Escherichia coli , Proteínas Fúngicas/análise , Proteínas Fúngicas/isolamento & purificação , Chaperonas Moleculares/análise , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/química , Citosol/fisiologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/fisiologia , Dimerização , Proteínas Fúngicas/química , Proteínas Fúngicas/fisiologia , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico/química , Mitocôndrias , Chaperonas Moleculares/fisiologia , Saccharomyces cerevisiae/fisiologia
5.
Mol Cell Biol ; 20(19): 7220-9, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10982839

RESUMO

Nam9p is a protein of the mitochondrial ribosome. The respiration-deficient Saccharomyces cerevisiae strain MB43-nam9-1 expresses Nam9-1p containing the point mutation S82L. Respiratory deficiency correlates with a decrease in the steady level of some mitochondrially encoded proteins and the complete lack of mitochondrially encoded cytochrome oxidase subunit 2 (Cox2). De novo synthesis of Cox2 in MB43-nam9-1 is unaffected, indicating that newly synthesized Cox2 is rapidly degraded. Respiratory deficiency of MB43-nam9-1 is overcome by transient overexpression of HSP104, by deletion of HSP104, by transient exposure to guanidine hydrochloride, and by expression of the C-terminal portion of Sup35, indicating an involvement of the yeast prion [PSI(+)]. Respiratory deficiency of MB43-nam9-1 can be reinduced by transfer of cytosol from S. cerevisiae that harbors [PSI(+)]. We conclude that nam9-1 causes respiratory deficiency only in combination with the cytosolic prion [PSI(+)], presenting the first example of a synthetic effect between cytosolic [PSI(+)] and a mutant mitochondrial protein.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Fúngicas/fisiologia , Proteínas Nucleares , Proteínas de Plantas/metabolismo , Príons/fisiologia , Proteínas Repressoras , Proteínas Ribossômicas/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Citosol/metabolismo , DNA Fúngico/genética , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Deleção de Genes , Guanidina/farmacologia , Proteínas de Choque Térmico/deficiência , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/fisiologia , Mitocôndrias/fisiologia , Consumo de Oxigênio/efeitos dos fármacos , Fatores de Terminação de Peptídeos , Fenótipo , Proteínas de Plantas/genética , Mutação Puntual , Príons/genética , Biossíntese de Proteínas , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/genética
7.
Mol Biol Cell ; 10(10): 3289-99, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10512867

RESUMO

To identify yeast cytosolic proteins that mediate targeting of precursor proteins to mitochondria, we developed an in vitro import system consisting of purified yeast mitochondria and a radiolabeled mitochondrial precursor protein whose C terminus was still attached to the ribosome. In this system, the N terminus of the nascent chain was translocated across both mitochondrial membranes, generating a translocation intermediate spanning both membranes. The nascent chain could then be completely chased into the mitochondrial matrix after release from the ribosome. Generation of this import intermediate was dependent on a mitochondrial membrane potential, mitochondrial surface proteins, and was stimulated by proteins that could be released from the ribosomes by high salt. The major salt-released stimulatory factor was yeast nascent polypeptide-associated complex (NAC). Purified NAC fully restored import of salt-washed ribosome-bound nascent chains by enhancing productive binding of the chains to mitochondria. We propose that ribosome-associated NAC facilitates recognition of nascent precursor chains by the mitochondrial import machinery.


Assuntos
Proteínas Fúngicas/metabolismo , Mitocôndrias/metabolismo , Transativadores/farmacologia , Leveduras/metabolismo , Transporte Biológico , Citosol/metabolismo , Membranas Intracelulares/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Chaperonas Moleculares , Processamento de Proteína Pós-Traducional , Ribossomos/metabolismo , Transativadores/química , Peptidase de Processamento Mitocondrial
8.
Mol Microbiol ; 31(2): 473-87, 1999 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10027965

RESUMO

Glutaconyl-CoA decarboxylase from Acidaminococcus fermentans (clostridal cluster IX), a strict anaerobic inhabitant of animal intestines, uses the free energy of decarboxylation (delta G(o) approximately -30 kJ mol-1) in order to translocate Na+ from the inside through the cytoplasmic membrane. The proton, which is required for decarboxylation, most probably comes from the outside. The enzyme consists of four different subunits. The largest subunit, alpha or GcdA (65 kDa), catalyses the transfer of CO2 from glutaconyl-CoA to biotin covalently attached to the gamma-subunit, GcdC. The beta-subunit, GcdB, is responsible for the decarboxylation of carboxybiotin, which drives the Na+ translocation (approximate K(m) for Na+ 1 mM), whereas the function of the smallest subunit, delta or GcdD, is unclear. The gene gcdA is part of the 'hydroxyglutarate operon', which does not contain genes coding for the other three subunits. This paper describes that the genes, gcdDCB, are transcribed in this order from a distinct operon. The delta-subunit (GcdD, 12 kDa), with one potential transmembrane helix, probably serves as an anchor for GcdA. The biotin carrier (GcdC, 14 kDa) contains a flexible stretch of 50 amino acid residues (A26-A75), which consists of 34 alanines, 14 prolines, one valine and one lysine. The beta-subunit (GcdB, 39 kDa) comprising 11 putative transmembrane helices shares high amino acid sequence identities with corresponding deduced gene products from Veillonella parvula (80%, clostridial cluster IX), Archaeoglobus fulgidus (61%, Euryarchaeota), Propionigenium modestum (60%, clostridial cluster XIX), Salmonella typhimurium (51%, enterobacteria) and Klebsiella pneumoniae (50%, enterobacteria). Directly upstream of the promoter region of the gcdDCB operon, the 3' end of gctM was detected. It encodes a protein fragment with 73% sequence identity to the C-terminus of the alpha-subunit of methylmalonyl-CoA decarboxylase from V. parvula (MmdA). Hence, it appears that A. fermentans should be able to synthesize this enzyme by expression of gctM together with gdcDCB, but methylmalonyl-CoA decarboxylase activity could not be detected in cell-free extracts. Earlier observations of a second, lower affinity binding site for Na+ of glutaconyl-CoA decarboxylase (apparent K(m) 30 mM) were confirmed by identification of the cysteine residue 243 of GcdB between the putative hellces VII and VIII, which could be specifically protected from alkylation by Na+. The alpha-subunit was purified from an overproducing Escherichia coli strain and was characterized as a putative homotrimer able to catalyse the carboxylation of free biotin.


Assuntos
Carboxiliases/genética , Genes Bacterianos , Bactérias Anaeróbias Gram-Negativas/enzimologia , Óperon , Sódio/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Transporte Biológico , Biotina , Clonagem Molecular , DNA Bacteriano , Íons , Dados de Sequência Molecular , Fases de Leitura Aberta , Transcrição Gênica
9.
EMBO J ; 17(20): 5868-76, 1998 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-9774331

RESUMO

The mechanism of chaperonin-assisted protein folding has been mostly analyzed in vitro using non-homologous substrate proteins. In order to understand the relative importance of hsp60 and hsp10 in the living cell, homologous substrate proteins need to be identified and analyzed. We have devised a novel screen to test the folding of a large variety of homologous substrates in the mitochondrial matrix in the absence or presence of functional hsp60 or hsp10. The identified substrates have an Mr of 15-90 kDa and fall into three groups: (i) proteins that require both hsp60 and hsp10 for correct folding; (ii) proteins that completely fail to fold after inactivation of hsp60 but are unaffected by the inactivation of hsp10; and (iii) newly imported hsp60 itself, which is more severely affected by inactivation of hsp10 than by inactivation of pre-existing hsp60. The majority of the identified substrates are group I proteins. For these, the lack of hsp60 function has a more pronounced effect than inactivation of hsp10. We suggest that homologous substrate proteins have differential chaperonin requirements, indicating that hsp60 and hsp10 do not always act as a single functional unit in vivo.


Assuntos
Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Chaperoninas/metabolismo , Mitocôndrias/química , Eletroforese em Gel Bidimensional , Mutação , Biossíntese de Proteínas , Dobramento de Proteína , Precursores de Proteínas/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae , Especificidade por Substrato , Temperatura , Tiossulfato Sulfurtransferase/química , Tiossulfato Sulfurtransferase/metabolismo
10.
EMBO J ; 17(14): 3886-98, 1998 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-9670006

RESUMO

Mitochondrial precursor proteins with basic targeting signals may be transported across the outer membrane by sequential binding to acidic receptor sites of increasing affinity. To test this 'acid chain' hypothesis, we assayed the interaction of mitochondrial precursors with three acidic receptor domains: the cytosolic domain of Tom20 and the intermembrane space domain of Tom22 and Tim23. The apparent affinity and salt resistance of precursor binding increased in the order Tom20

Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Mitocôndrias/metabolismo , Precursores de Proteínas/metabolismo , Receptores de Superfície Celular , Receptores Citoplasmáticos e Nucleares , Proteínas de Saccharomyces cerevisiae , Ácidos , Adrenodoxina/metabolismo , Transporte Biológico , Proteínas de Transporte/genética , Citosol/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Membranas Intracelulares/metabolismo , Proteínas Ligantes de Maltose , Proteínas de Membrana/genética , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Acetato de Potássio/farmacologia , Ligação Proteica , Proteínas Recombinantes de Fusão , Saccharomyces cerevisiae
12.
Biochem Biophys Res Commun ; 244(3): 884-8, 1998 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-9535761

RESUMO

Gel filtration studies demonstrate that the heptameric complex of yeast cpn10 (pI around 8.8) reversibly disassembles into monomers when lowering the pH to 4.5, whereas its secondary structure is retained as demonstrated by circular dichroism. Monomeric yeast cpn10 does not bind to GroEL in the presence of nucleotides, whereas under identical conditions E. coli cpn10 (GroES), having a strong sequence homology to the yeast form but a pI of 5.2, shows no pH-dependent dissociation and is able to complex with GroEL at both pH 7.5 and 4.5. Using circular dichroism it is shown that, unlike E. coli cpn10, yeast cpn10 is not able to refold spontaneously after first being fully unfolded in 8 M urea. However, refolding of yeast cpn10 to a complex that can be recognised by GroEL depends on the presence of a lipid-water interface with a specificity for negatively charged lipids. We suggest that the requirements for refolding of yeast cpn10 are related to its post-translational transport and subcellular localization.


Assuntos
Chaperonina 10/química , Dobramento de Proteína , Proteínas de Bactérias/química , Proteínas Fúngicas/química , Micelas , Mitocôndrias/química , Conformação Proteica , Desnaturação Proteica , Estrutura Secundária de Proteína , Ureia/farmacologia , Leveduras
13.
Mol Biol Cell ; 8(11): 2267-80, 1997 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9362068

RESUMO

Cyclophilin and FK506 binding protein (FKBP) accelerate cis-trans peptidyl-prolyl isomerization and bind to and mediate the effects of the immunosuppressants cyclosporin A and FK506. The normal cellular functions of these proteins, however, are unknown. We altered the active sites of FKBP12 and mitochondrial cyclophilin from the yeast Saccharomyces cerevisiae by introducing mutations previously reported to inactivate these enzymes. Surprisingly, most of these mutant enzymes were biologically active in vivo. In accord with previous reports, all of the mutant enzymes had little or no detectable prolyl isomerase activity in the standard peptide substrate-chymotrypsin coupled in vitro assay. However, in a variation of this assay in which the protease is omitted, the mutant enzymes exhibited substantial levels of prolyl isomerase activity (5-20% of wild-type), revealing that these mutations confer sensitivity to protease digestion and that the classic in vitro assay for prolyl isomerase activity may be misleading. In addition, the mutant enzymes exhibited near wild-type activity with two protein substrates, dihydrofolate reductase and ribonuclease T1, whose folding is accelerated by prolyl isomerases. Thus, a number of cyclophilin and FKBP12 "active-site" mutants previously identified are largely active but protease sensitive, in accord with our findings that these mutants display wild-type functions in vivo. One mitochondrial cyclophilin mutant (R73A), and also the wild-type human FKBP12 enzyme, catalyze protein folding in vitro but lack biological activity in vivo in yeast. Our findings provide evidence that both prolyl isomerase activity and other structural features are linked to FKBP and cyclophilin in vivo functions and suggest caution in the use of these active-site mutations to study FKBP and cyclophilin functions.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico/metabolismo , Mitocôndrias/enzimologia , Peptidilprolil Isomerase/metabolismo , Saccharomyces cerevisiae/enzimologia , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Humanos , Mutação , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/genética , Dobramento de Proteína , Proteínas Recombinantes de Fusão , Ribonuclease T1/metabolismo , Proteínas de Ligação a Tacrolimo , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo
14.
Proc Natl Acad Sci U S A ; 94(17): 9011-6, 1997 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-9256426

RESUMO

Chaperonins are essential for the folding of proteins in bacteria, mitochondria, and chloroplasts. We have functionally characterized the yeast mitochondrial chaperonins hsp60 and hsp10. In the presence of ADP, one molecule of hsp10 binds to hsp60 with an apparent Kd of 0.9 nM and a second molecule of hsp10 binds with a Kd of 24 nM. In the presence of ATP, the purified yeast chaperonins mediate the refolding of mitochondrial malate dehydrogenase. Hsp10 inhibits the ATPase activity of hsp60 by about 40%. Hsp10(P36H) is a point mutant of hsp10 that confers temperature-sensitive growth to yeast. Consistent with the in vivo phenotype, refolding of mitochondrial malate dehydrogenase in the presence of purified hsp10(P36H) and hsp60 is reduced at 25 degrees C and abolished at 30 degrees C. The affinity of hsp10(P36H) to hsp60 as well as to Escherichia coli GroEL is reduced. However, this decrease in affinity does not correlate with the functional defect, because hsp10(P36H) fully assists the GroEL-mediated refolding of malate dehydrogenase at 30 degrees C. Refolding activity, rather, correlates with the ability of hsp10(P36H) to inhibit the ATPase of GroEL but not that of hsp60. Based on our findings, we propose that the inhibition of ATP hydrolysis is mechanistically coupled to chaperonin-mediated protein folding.


Assuntos
Trifosfato de Adenosina/metabolismo , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Saccharomyces cerevisiae/metabolismo , Escherichia coli/metabolismo , Hidrólise , Malato Desidrogenase/química , Malato Desidrogenase/metabolismo , Dobramento de Proteína
15.
EMBO J ; 16(14): 4267-75, 1997 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-9250670

RESUMO

We have reconstituted the early steps of precursor targeting to mitochondria in a defined and soluble system consisting of the cytosolic domains of the yeast mitochondrial import receptors Tom20 and Tom70, precursor to bovine adrenal adrenodoxin (which has a cleavable targeting signal) and rat liver cytosolic chaperones hsp70 and mitochondrial import-stimulating factor (MSF). The Tom70 domain only bound the precursor in the presence of MSF, yielding a precursor-MSF-Tom70 complex; ATP hydrolysis by MSF released MSF and generated a precursor-Tom70 complex whose formation was inhibited by an excess of a functional presequence peptide, but not by 150 mM NaCl. In the presence of the Tom20 domain, ATP caused transfer of the precursor from the precursor-MSF-Tom70 complex to Tom20. The Tom20 domain alone only bound the precursor in the presence of hsp70; hsp70 itself was not incorporated into the resulting complex. Formation of the Tom20-precursor complex was inhibited by excess presequence peptide or by 150 mM NaCl. Similar results were obtained with the ADP/ATP carrier and porin precursors, which both lack a cleaved targeting signal. Correct targeting of a precursor to mitochondrial import receptors thus requires cytosolic chaperones, irrespective of the presence or absence of a cleavable presequence.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Porinas , Precursores de Proteínas/metabolismo , Receptores de Superfície Celular , Proteínas 14-3-3 , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Adrenodoxina/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas Fúngicas/química , Translocases Mitocondriais de ADP e ATP/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Chaperonas Moleculares/química , Dados de Sequência Molecular , Fragmentos de Peptídeos/farmacologia , Ligação Proteica , Ratos , Cloreto de Sódio/farmacologia , Canais de Ânion Dependentes de Voltagem
16.
EMBO J ; 16(8): 1842-9, 1997 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-9155010

RESUMO

The mitochondrial chaperone mhsp70 mediates protein transport across the inner membrane and protein folding in the matrix. These two reactions are effected by two different mhsp70 complexes. The ADP conformation of mhsp70 favors formation of a complex on the inner membrane; this 'import complex' contains mhsp70, its membrane anchor Tim44 and the nucleotide exchange factor mGrpE. The ATP conformation of mhsp70 favors formation of a complex in the matrix; this 'folding complex' contains mhsp70, the mitochondrial DnaJ homolog Mdj1 and mGrpE. A precursor protein entering the matrix interacts first with the import complex and then with the folding complex. A chaperone can thus function as part of two different complexes within the same organelle.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Histidina , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Precursores de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Transporte/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Membranas Intracelulares , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase (Citocromo) , Proteínas de Membrana/química , Proteínas de Membrana/genética , Metotrexato/farmacologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Chaperonas Moleculares , Peptídeos , Ligação Proteica , Dobramento de Proteína , Saccharomyces cerevisiae/metabolismo , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo
17.
Eur J Biochem ; 244(2): 627-34, 1997 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-9119033

RESUMO

Although the chaperonin GroEL/GroES complex binds and hydrolyzes ATP, its structure is unlike other known ATPases. In order to better characterize its nucleotide binding sites, we have photolabeled the complex with the affinity analog 2-azido-ATP. Three residues of GroEL, Pro137, Cys138 and Thr468, are labeled by the probe. The location of these residues in the GroEL crystal structure [Braig, K., Otwinowski, Z., Hedge, R., Boisvert, D., Joachimiak, A., Horwich, A. & Sigler, P. (1994) Nature 371, 578-586: Boisvert, D. C., Wang, J., Otwinowski, Z., Horwich, A. L. & Sigler, P. B. (1996) Nat. Struct. Biol. 3, 170-177] suggests that 2-azido-ATP binds to an alternative conformer of GroEL in the presence of GroES. The labeled site appears to be located at the GroEL/GroEL subunit interface since modification of Pro137 and Cys138 is most readily explained by attack of a probe molecule bound to the adjacent GroEL subunit. Labeling of the co-chaperonin, GroES, is clearly demonstrated on gels and the covalent tethering of nucleotide allows detection of a GroES dimer in the presence of SDS. However, no stable peptide derivative of GroES could be purified for sequencing. In contrast, the GroES homolog, yeast cpn10, does give a stable derivative. The modified amino acid is identified as the conserved Pro13, which corresponds to Pro5 in Escherichia coli GroES.


Assuntos
Chaperonina 10/química , Chaperonina 60/química , Trifosfato de Adenosina/análogos & derivados , Marcadores de Afinidade , Azidas , Sítios de Ligação , Chaperonina 10/genética , Chaperonina 10/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Nucleotídeos/metabolismo , Conformação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
18.
EMBO J ; 15(4): 764-74, 1996 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-8631298

RESUMO

Proteins that are imported from the cytosol into mitochondria cross the mitochondrial membranes in an unfolded conformation and then fold in the matrix. Some of these proteins require the chaperonin hsp60 for folding. To test whether hsp60 is required for the folding of all imported matrix proteins, we monitored the folding of four monomeric proteins after import into mitochondria from wild-type yeast or from a mutant strain in which hsp60 had been inactivated. The four precursors included two authentic matrix proteins (rhodanese and the mitochondrial cyclophilin Cpr3p) and two artificial precursors (matrix-targeted variants of dihydrofolate reductase and barnase). Only rhodanese formed a tight complex with hsp60 and required hsp60 for folding. The three other proteins folded efficiently without, and showed no detectable binding to, hsp60. Thus, the mitochondrial chaperonin system is not essential for the folding of all matrix proteins. These data agree well with earlier in vitro studies, which had demonstrated that only a subset of proteins require chaperones for efficient folding.


Assuntos
Chaperonina 60/metabolismo , Proteínas Fúngicas/química , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Isomerases de Aminoácido/metabolismo , Proteínas de Bactérias , Transporte Biológico , Proteínas de Transporte/metabolismo , Sistema Livre de Células , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Membranas Intracelulares/metabolismo , Peptidilprolil Isomerase , Ligação Proteica , Dobramento de Proteína , Ribonucleases/metabolismo , Saccharomyces cerevisiae , Tetra-Hidrofolato Desidrogenase/metabolismo , Tiossulfato Sulfurtransferase/metabolismo
19.
Proc Natl Acad Sci U S A ; 92(14): 6319-23, 1995 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-7603990

RESUMO

Cyclophilins are a family of ubiquitous proteins that are the intracellular target of the immunosuppressant drug cyclosporin A. Although cyclophilins catalyze peptidylprolyl cis-trans isomerization in vitro, it has remained open whether they also perform this function in vivo. Here we show that Cpr3p, a cyclophilin in the matrix of yeast mitochondria, accelerates the refolding of a fusion protein that was synthesized in a reticulocyte lysate and imported into the matrix of isolated yeast mitochondria. The fusion protein consisted of the matrix-targeting sequence of subunit 9 of F1F0-ATPase fused to mouse dihydrofolate reductase. Refolding of the dihydrofolate reductase moiety in the matrix was monitored by acquisition of resistance to proteinase K. The rate of refolding was reduced by a factor of 2-6 by 2.5 microM cyclosporin A. This reduced rate of folding was also observed with mitochondria lacking Cpr3p. In these mitochondria, protein folding was insensitive to cyclosporin A. The rate of protein import was not affected by cyclosporin A or by deletion of Cpr3p.


Assuntos
Isomerases de Aminoácido/metabolismo , Proteínas de Transporte/metabolismo , Mitocôndrias/metabolismo , Neurospora crassa/metabolismo , Conformação Proteica , Dobramento de Proteína , ATPases Translocadoras de Prótons/biossíntese , ATPases Translocadoras de Prótons/química , Saccharomyces cerevisiae/metabolismo , Tetra-Hidrofolato Desidrogenase/biossíntese , Tetra-Hidrofolato Desidrogenase/química , Animais , Chaperoninas/metabolismo , Histidina , Cinética , Camundongos , Modelos Estruturais , Peptidilprolil Isomerase , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Sitios de Sequências Rotuladas
20.
J Biol Chem ; 270(10): 5565-70, 1995 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-7890675

RESUMO

Protein import into yeast mitochondria is mediated by the four outer membrane receptors Mas70p, Mas37p, Mas20p, and Mas22p. These receptors may function as two subcomplexes: a Mas37p/Mas70p heterodimer and an acidic complex consisting of Mas20p and Mas22p. To assess the relative contribution of these subcomplexes to precursor binding, we allowed different precursors to bind to the surface of deenergized mitochondria, then reenergized the mitochondria and measured the chase of the bound precursors into the organelles. Productive binding of several precursors with a positively charged amino-terminal matrix targeting sequence, such as SU9-DHFR, hsp60, and mitochondrial cpn10, was strongly inhibited by salt, by low concentrations of a mitochondrial presequence peptide, and by a deletion of Mas20p, but was independent of Mas37p/Mas70p. In contrast, productive binding of the ADP/ATP carrier was not inhibited by salt, the presequence peptide, or a deletion of Mas20p, but was strongly dependent on Mas37p/Mas70p. The precursors of alcohol dehydrogenase III and the Rieske iron-sulfur protein had binding properties between these two extremes. The productively bound precursor of cpn10 could be cross-linked to Mas20p. We conclude that Mas20p binds mitochondrial precursor proteins through electrostatic interactions with the positively charged presequence, whereas Mas37p/Mas70p may recognize some feature(s) of the mature part of precursor proteins.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Mitocôndrias/metabolismo , Precursores de Proteínas/metabolismo , Receptores de Superfície Celular , Receptores Citoplasmáticos e Nucleares , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Animais , Chaperonina 60/metabolismo , Eletroquímica , Histidina , Cinética , Substâncias Macromoleculares , Proteínas de Membrana/biossíntese , Proteínas de Membrana/química , Camundongos , Translocases Mitocondriais de ADP e ATP/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Dados de Sequência Molecular , Neurospora crassa/enzimologia , Organelas/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , ATPases Translocadoras de Prótons/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Deleção de Sequência , Sitios de Sequências Rotuladas , Tetra-Hidrofolato Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...