Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38352441

RESUMO

Obesity is a major public health crisis given its rampant growth and association with an increased risk for cancer. Interestingly, patients with obesity tend to have an increased tumor burden and decreased T-cell function. It remains unclear how obesity compromises T-cell mediated immunity. To address this question, we modeled the adipocyte niche using the secretome released from adipocytes as well as the niche of stromal cells and investigated how these factors modulated T-cell function. We found that the secretomes altered antigen-specific T-cell receptor (TCR) triggering and activation. RNA-sequencing analysis identified thousands of gene targets modulated by the secretome including those associated with cytoskeletal regulation and actin polymerization. We next used molecular force probes to show that T-cells exposed to the adipocyte niche display dampened force transmission to the TCR-antigen complex and conversely, stromal cell secreted factors lead to significantly enhanced TCR forces. These results were then validated in diet-induced obese mice. Importantly, secretome-mediated TCR force modulation mirrored the changes in T-cell functional responses in human T-cells using the FDA-approved immunotherapy, blinatumomab. Thus, this work shows that the adipocyte niche contributes to T-cell dysfunction through cytoskeletal modulation and reduces TCR triggering by dampening TCR forces consistent with the mechanosensor model of T-cell activation.

2.
J Natl Cancer Inst Monogr ; 2023(61): 12-29, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37139973

RESUMO

The obesity pandemic currently affects more than 70 million Americans and more than 650 million individuals worldwide. In addition to increasing susceptibility to pathogenic infections (eg, SARS-CoV-2), obesity promotes the development of many cancer subtypes and increases mortality rates in most cases. We and others have demonstrated that, in the context of B-cell acute lymphoblastic leukemia (B-ALL), adipocytes promote multidrug chemoresistance. Furthermore, others have demonstrated that B-ALL cells exposed to the adipocyte secretome alter their metabolic states to circumvent chemotherapy-mediated cytotoxicity. To better understand how adipocytes impact the function of human B-ALL cells, we used a multi-omic RNA-sequencing (single-cell and bulk transcriptomic) and mass spectroscopy (metabolomic and proteomic) approaches to define adipocyte-induced changes in normal and malignant B cells. These analyses revealed that the adipocyte secretome directly modulates programs in human B-ALL cells associated with metabolism, protection from oxidative stress, increased survival, B-cell development, and drivers of chemoresistance. Single-cell RNA sequencing analysis of mice on low- and high-fat diets revealed that obesity suppresses an immunologically active B-cell subpopulation and that the loss of this transcriptomic signature in patients with B-ALL is associated with poor survival outcomes. Analyses of sera and plasma samples from healthy donors and those with B-ALL revealed that obesity is associated with higher circulating levels of immunoglobulin-associated proteins, which support observations in obese mice of altered immunological homeostasis. In all, our multi-omics approach increases our understanding of pathways that may promote chemoresistance in human B-ALL and highlight a novel B-cell-specific signature in patients associated with survival outcomes.


Assuntos
COVID-19 , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Animais , Camundongos , Proteômica , SARS-CoV-2 , Obesidade/complicações , Obesidade/metabolismo
3.
Nat Commun ; 13(1): 1157, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241678

RESUMO

The incidence of obesity is rising with greater than 40% of the world's population expected to be overweight or suffering from obesity by 2030. This is alarming because obesity increases mortality rates in patients with various cancer subtypes including leukemia. The survival differences between lean patients and patients with obesity are largely attributed to altered drug pharmacokinetics in patients receiving chemotherapy; whereas, the direct impact of an adipocyte-enriched microenvironment on cancer cells is rarely considered. Here we show that the adipocyte secretome upregulates the surface expression of Galectin-9 (GAL-9) on human B-acute lymphoblastic leukemia cells (B-ALL) which promotes chemoresistance. Antibody-mediated targeting of GAL-9 on B-ALL cells induces DNA damage, alters cell cycle progression, and promotes apoptosis in vitro and significantly extends the survival of obese but not lean mice with aggressive B-ALL. Our studies reveal that adipocyte-mediated upregulation of GAL-9 on B-ALL cells can be targeted with antibody-based therapies to overcome obesity-induced chemoresistance.


Assuntos
Linfoma de Burkitt , Galectinas , Obesidade , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Apoptose , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patologia , Linhagem Celular Tumoral , Galectinas/metabolismo , Humanos , Camundongos , Obesidade/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Microambiente Tumoral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...