Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 58(3): 478-484, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28100648

RESUMO

Membrane contact sites are recognized across eukaryotic systems as important nanostructures. Endoplasmic reticulum (ER)-plasma membrane (PM) contact sites (EPCS) are involved in excitation-contraction coupling, signaling, and plant responses to stress. In this report, we perform a multiscale structural analysis of Arabidopsis EPCS that combines live cell imaging, quantitative transmission electron microscopy (TEM) and electron tomography over a developmental gradient. To place EPCS in the context of the entire cortical ER, we examined green fluorescent protein (GFP)-HDEL in living cells over a developmental gradient, then Synaptotagmin1 (SYT1)-GFP was used as a specific marker of EPCS. In all tissues examined, young, rapidly elongating cells showed lamellar cortical ER and higher density of SYT1-GFP puncta, while in mature cells the cortical ER network was tubular, highly dynamic and had fewer SYT1-labeled puncta. The higher density of EPCS in young cells was verified by quantitative TEM of cryo-fixed tissues. For all cell types, the size of each EPCS had a consistent range in length along the PM from 50 to 300 nm, with microtubules and ribosomes excluded from the EPCS. The structural characterization of EPCS in different plant tissues, and the correlation of EPCS densities over developmental gradients illustrate how ER-PM communication evolves in response to cellular expansion.


Assuntos
Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/ultraestrutura , Microscopia Eletrônica de Transmissão , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Ribossomos/metabolismo , Ribossomos/ultraestrutura
2.
Exp Eye Res ; 136: 86-90, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26008144

RESUMO

Transmission electron microscopy is the gold standard for examination of photoreceptor outer segment morphology and photoreceptor outer segment abnormalities in transgenic animal models of retinal disease. Small vertebrates such as zebrafish and Xenopus laevis tadpoles have been used to generate retinal disease models and to study outer segment processes such as protein trafficking, and their breeding capabilities facilitate experiments involving large numbers of animals and conditions. However, electron microscopy processing and analysis of these very small eyes can be challenging. Here we present a methodology that facilitates processing of X. laevis tadpole eyes for electron microscopy by introducing an intermediate cryosectioning step. This method reproducibly provides a well-oriented tissue block that can be sectioned with minimal effort by a non-expert, and also allows retroactive analysis of samples collected on slides for light microscopy.


Assuntos
Crioultramicrotomia/métodos , Retina/ultraestrutura , Xenopus laevis , Animais , Técnicas de Preparação Histocitológica , Microscopia Eletrônica de Transmissão , Inclusão do Tecido , Fixação de Tecidos/métodos
3.
Protoplasma ; 250(1): 317-23, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22562749

RESUMO

Dwarf mistletoes, genus Arceuthobium (Santalaceae), are parasitic angiosperms that spread their seeds by an explosive process. As gentle heating triggers discharge in the lab, we wondered if thermogenesis (endogenous heat production) is associated with dispersal. Thermogenesis occurs in many plants and is enabled by mitochondrial alternative oxidase (AOX) activity. The purpose of this study was to probe Arceuthobium americanum fruit (including seed tissues) collected over a 10-week period with an anti-AOX antibody/gold-labeled secondary antibody to determine if AOX could be localized in situ, and if so, quantitatively assess whether label distribution changed during development; immunochemical results were evaluated with Western blotting. No label could be detected in the mitochondria of any fruit or seed tissue, but was observed in fruit exocarp plastids of samples collected in the last 2 weeks of study; plastids collected in week 10 had significantly more label than week 9 (p = 0.002). Western blotting of whole fruit and mitochondrial proteins revealed a signal at 30-36 kD, suggestive of AOX, while blots of whole fruit (but not mitochondrial fraction) proteins showed a second band at 40-45 kD, in agreement with plastid terminal oxidases (PTOXs). AOX enzymes are likely present in the A. americanum fruit, even though they were not labeled in mitochondria. The results strongly indicate that the anti-AOX antibody was labeling PTOX in plastids, probably at a C-terminal region conserved in both enzymes. PTOX in plastids may be involved in fruit ripening, although a role for PTOX in thermogenesis cannot be eliminated.


Assuntos
Proteínas Mitocondriais/química , Oxirredutases/química , Proteínas de Plantas/química , Viscaceae/enzimologia , Anticorpos/química , Anticorpos/imunologia , Western Blotting , Sequência Conservada/imunologia , Frutas/química , Frutas/enzimologia , Frutas/ultraestrutura , Imuno-Histoquímica , Isoenzimas , Microscopia Eletrônica de Transmissão , Proteínas Mitocondriais/imunologia , Oxirredutases/imunologia , Proteínas de Plantas/imunologia , Plastídeos/química , Plastídeos/enzimologia , Plastídeos/ultraestrutura , Viscaceae/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...