Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Epigenetics ; 18(1): 2276425, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37976174

RESUMO

An immortalized neural cell line derived from the human ventral mesencephalon, called ReNCell, and its MeCP2 knock out were used. With it, we characterized the chromatin compositional transitions undergone during differentiation, with special emphasis on linker histones. While the WT cells displayed the development of dendrites and axons the KO cells did not, despite undergoing differentiation as monitored by NeuN. ReNCell expressed minimal amounts of histone H1.0 and their linker histone complement consisted mainly of histone H1.2, H1.4 and H1.5. The overall level of histone H1 exhibited a trend to increase during the differentiation of MeCP2 KO cells. The phosphorylation levels of histone H1 proteins decreased dramatically during ReNCell's cell differentiation independently of the presence of MeCP2. Immunofluorescence analysis showed that MeCP2 exhibits an extensive co-localization with linker histones. Interestingly, the average size of the nucleus decreased during differentiation but in the MeCP2 KO cells, the smaller size of the nuclei at the start of differentiation increased by almost 40% after differentiation by 8 days (8 DIV). In summary, our data provide a compelling perspective on the dynamic changes of H1 histones during neural differentiation, coupled with the intricate interplay between H1 variants and MeCP2.Abbreviations: ACN, acetonitrile; A230, absorbance at 230 nm; bFGF, basic fibroblast growth factor; CM, chicken erythrocyte histone marker; CNS, central nervous system; CRISPR, clustered regulated interspaced short palindromic repeatsDAPI, 4,'6-diaminidino-2-phenylindole; DIV, days in vitro (days after differentiation is induced); DMEM, Dulbecco's modified Eagle medium; EGF, epidermal growth factor; ESC, embryonic stem cell; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GFAP, glial fibrillary acidic proteinHPLC, high-performance liquid chromatography; IF, immunofluorescence; iPSCs, induced pluripotent stem cells; MAP2, microtubule-associated protein 2; MBD, methyl-binding domain; MeCP2, methyl-CpG binding protein 2; MS, mass spectrometry; NCP, nucleosome core particle; NeuN, neuron nuclear antigen; NPC, neural progenitor cellPAGE, polyacrylamide gel electrophoresis; PBS, phosphate buffered saline; PFA, paraformaldehyde; PTM, posttranslational modification; RP-HPLC, reversed phase HPLC; ReNCells, ReNCells VM; RPLP0, ribosomal protein lateral stalk subunit P0; RT-qPCR, reverse transcription quantitative polymerase-chain reaction; RTT, Rett Syndrome; SDS, sodium dodecyl sulphate; TAD, topologically associating domain; Triple KO, triple knockout.


Assuntos
Metilação de DNA , Histonas , Humanos , Diferenciação Celular , Cromatina , Histonas/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Células-Tronco/metabolismo
2.
bioRxiv ; 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37873288

RESUMO

DELLA proteins are conserved master growth regulators that play a central role in controlling plant development in response to internal and environmental cues. DELLAs function as transcription regulators, which are recruited to target promoters by binding to transcription factors (TFs) and histone H2A via its GRAS domain. Recent studies showed that DELLA stability is regulated post-translationally via two mechanisms, phytohormone gibberellin-induced polyubiquitination for its rapid degradation, and Small Ubiquitin-like Modifier (SUMO)- conjugation to alter its accumulation. Moreover, DELLA activity is dynamically modulated by two distinct glycosylations: DELLA-TF interactions are enhanced by O -fucosylation, but inhibited by O -linked N -acetylglucosamine ( O -GlcNAc) modification. However, the role of DELLA phosphorylation remains unclear. Here, we identified phosphorylation sites in REPRESSOR OF ga1-3 (RGA, an AtDELLA) purified from Arabidopsis by tandem mass spectrometry analysis, and showed that phosphorylation of the RGA LKS-peptide in the poly- S/T region enhances RGA-H2A interaction and RGA association with target promoters. Interestingly, phosphorylation does not affect RGA-TF interactions. Our study has uncovered that phosphorylation is a new regulatory mechanism of DELLA activity.

3.
RSC Chem Biol ; 4(6): 422-430, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37292058

RESUMO

Diacylglycerol kinases (DGKs) are metabolic kinases involved in regulating cellular levels of diacylglycerol and phosphatidic lipid messengers. The development of selective inhibitors for individual DGKs would benefit from discovery of protein pockets available for inhibitor binding in cellular environments. Here we utilized a sulfonyl-triazole probe (TH211) bearing a DGK fragment ligand for covalent binding to tyrosine and lysine sites on DGKs in cells that map to predicted small molecule binding pockets in AlphaFold structures. We apply this chemoproteomics-AlphaFold approach to evaluate probe binding of DGK chimera proteins engineered to exchange regulatory C1 domains between DGK subtypes (DGKα and DGKζ). Specifically, we discovered loss of TH211 binding to a predicted pocket in the catalytic domain when C1 domains on DGKα were exchanged that correlated with impaired biochemical activity as measured by a DAG phosphorylation assay. Collectively, we provide a family-wide assessment of accessible sites for covalent targeting that combined with AlphaFold revealed predicted small molecule binding pockets for guiding future inhibitor development of the DGK superfamily.

4.
Anal Chem ; 93(35): 11946-11955, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34431655

RESUMO

Chemical proteomics is widely used for the global investigation of protein activity and binding of small molecule ligands. Covalent probe binding and inhibition are assessed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to gain molecular information on targeted proteins and probe-modified sites. The identification of amino acid sites modified by large complex probes, however, is particularly challenging because of the increased size, hydrophobicity, and charge state of peptides derived from modified proteins. These studies are important for direct evaluation of proteome-wide selectivity of inhibitor scaffolds used to develop targeted covalent inhibitors. Here, we disclose reverse-phase chromatography and MS dissociation conditions tailored for binding site identification using a clickable covalent kinase inhibitor containing a sulfonyl-triazole reactive group (KY-26). We applied this LC-MS/MS strategy to identify tyrosine and lysine sites modified by KY-26 in functional sites of kinases and other ATP-/NAD-binding proteins (>65 in total) in live cells. Our studies revealed key bioanalytical conditions to guide future chemical proteomic workflows for direct target site identification of complex irreversible probes and inhibitors.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Cromatografia Líquida , Proteoma , Triazóis
5.
Mol Cell Proteomics ; 15(4): 1479-88, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26621848

RESUMO

Methodology for sequence analysis of ∼150 kDa monoclonal antibodies (mAb), including location of post-translational modifications and disulfide bonds, is described. Limited digestion of fully denatured (reduced and alkylated) antibody was accomplished in seconds by flowing a sample in 8murea at a controlled flow rate through a micro column reactor containing immobilized aspergillopepsin I. The resulting product mixture containing 3-9 kDa peptides was then fractionated by capillary column liquid chromatography and analyzed on-line by both electron-transfer dissociation and collisionally activated dissociation mass spectrometry (MS). This approach enabled identification of peptides that cover the complete sequence of a murine mAb. With customized tandem MS and ProSightPC Biomarker search, we verified 95% amino acid residues of this mAb and identified numerous post-translational modifications (oxidized methionine, pyroglutamylation, deamidation of Asn, and several forms ofN-linked glycosylation). For disulfide bond location, native mAb is subjected to the same procedure but with longer digestion times controlled by sample flow rate through the micro column reactor. Release of disulfide containing peptides from accessible regions of the folded antibody occurs with short digestion times. Release of those in the interior of the molecule requires longer digestion times. The identity of two peptides connected by a disulfide bond is determined using a combination of electron-transfer dissociation and ion-ion proton transfer chemistry to read the two N-terminal and two C-terminal sequences of the connected peptides.


Assuntos
Anticorpos Monoclonais/metabolismo , Proteólise , Análise de Sequência de Proteína/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Camundongos , Modelos Moleculares , Conformação Proteica , Processamento de Proteína Pós-Traducional , Fatores de Tempo
6.
J Agric Food Chem ; 63(49): 10669-80, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26595064

RESUMO

Undeclared food allergens account for 30-40% of food recalls in the United States. Compliance with ingredient labeling regulations and the implementation of effective manufacturing allergen control plans require the use of reliable methods for allergen detection and quantitation in complex food products. The objectives of this work were to (1) produce industry-processed model foods incurred with egg, milk, and peanut allergens, (2) compare analytical method performance for allergen quantitation in thermally processed bakery products, and (3) determine the effects of thermal treatment on allergen detection. Control and allergen-incurred cereal bars and muffins were formulated in a pilot-scale industry processing facility. Quantitation of egg, milk, and peanut in incurred baked goods was compared at various processing stages using commercial enzyme-linked immunosorbent assay (ELISA) kits and a novel multi-allergen liquid chromatography (LC)-tandem mass spectrometry (MS/MS) multiple-reaction monitoring (MRM) method. Thermal processing was determined to negatively affect the recovery and quantitation of egg, milk, and peanut to different extents depending on the allergen, matrix, and analytical test method. The Morinaga ELISA and LC-MS/MS quantitative methods reported the highest recovery across all monitored allergens, whereas the ELISA Systems, Neogen BioKits, Neogen Veratox, and R-Biopharm ELISA Kits underperformed in the determination of allergen content of industry-processed bakery products.


Assuntos
Alérgenos/análise , Análise de Alimentos/métodos , Manipulação de Alimentos/métodos , Hipersensibilidade Alimentar/prevenção & controle , Temperatura Alta , Alérgenos/química , Sequência de Aminoácidos , Animais , Arachis/imunologia , Cromatografia Líquida/métodos , Ovos/análise , Ensaio de Imunoadsorção Enzimática/métodos , Hipersensibilidade Alimentar/imunologia , Leite/imunologia , Dados de Sequência Molecular , Espectrometria de Massas em Tandem/métodos
8.
J Agric Food Chem ; 62(25): 5835-44, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24866027

RESUMO

Global and targeted mass spectrometry-based proteomic approaches were developed to discover, evaluate, and apply gluten peptide markers to detect low parts per million (ppm) wheat contamination of oats. Prolamins were extracted from wheat, barley, rye, and oat flours and then reduced, alkylated, and digested with chymotrypsin. The resulting peptides were subjected to LC-MS/MS analysis and database matching. No peptide markers common to wheat, barley, and rye were identified that could be used for global gluten detection. However, many grain-specific peptide markers were identified, and a set of these markers was selected for gluten detection and grain differentiation. Wheat flour was spiked into gluten-free oat flour at concentrations of 1-100,000 ppm and analyzed to determine the lowest concentration at which the wheat "contaminant" could be confidently detected in the mixture. The same 2D ion trap instrument that was used for the global proteomics approach was used for the targeted proteomics approach, providing a seamless transition from target discovery to application. A powerful, targeted MS/MS method enabled detection of two wheat peptide markers at the 10 ppm wheat flour-in-oat flour concentration. Because gluten comprises approximately 10% of wheat flour protein, the reported wheat gluten-specific peptides can enable detection of approximately 1 ppm of wheat gluten in oats.


Assuntos
Contaminação de Alimentos/análise , Glutens/química , Peptídeos/química , Espectrometria de Massas em Tandem/métodos , Triticum/química , Análise Discriminante , Grão Comestível/química , Especificidade da Espécie
9.
J Agric Food Chem ; 61(24): 5621-3, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23167825

RESUMO

A symposium titled "Advances in Food Allergen Detection" was held at the 243rd National Meeting of the American Chemical Society (ACS) in March 2012 in San Diego, CA, and was sponsored by the ACS Division of Agricultural and Food Chemistry. The purpose of the symposium was to convene the leaders in the food allergen analysis field for presentations on, and discussions of, the state of the art, new developments, and critical challenges in the detection and quantitation of allergenic proteins in foods. Twenty-five presentations were delivered by speakers representing academic, government, and industrial institutions in 10 countries. The presentations covered all aspects of food allergens, including a historical progress review, regulatory policies, clinical practices, food-processing effects, food production equipment cross-contamination and cleaning, and the performance of several food allergen analytical strategies and technologies. This paper is intended to provide a brief summary of the presentations as well as a record of the proceedings of the symposium, which was deemed a great success in advancing food allergen analysis.


Assuntos
Alérgenos/análise , Hipersensibilidade Alimentar/prevenção & controle , Inspeção de Alimentos/métodos , Tecnologia de Alimentos , Alérgenos/efeitos adversos , Antígenos de Plantas/efeitos adversos , Antígenos de Plantas/análise , Canadá , Congressos como Assunto , Alimentos/normas , Hipersensibilidade Alimentar/etiologia , Rotulagem de Alimentos/legislação & jurisprudência , Rotulagem de Alimentos/normas , Humanos , Legislação sobre Alimentos , Sociedades Científicas , Estados Unidos
10.
J Agric Food Chem ; 61(24): 5638-48, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23039025

RESUMO

Peanuts (Arachis hypogaea) are the cause of one of the most prevalent food allergies worldwide. Thermal processing (e.g., roasting) of peanuts and peanut-containing foods results in complex chemical reactions that alter structural conformations of peanut proteins, preventing accurate detection of allergens by most immunochemical and targeted screening methodologies. To improve food allergen detection and support more accurate food labeling, traditional methods for peanut protein extraction were modified to include protein denaturants and solubilization agents. Qualitative characterization by SDS-PAGE and Western blot analyses of raw and variably roasted peanut extracts confirmed improvements in total protein recovery and provided evidence for the incorporation of Ara h 1, Ara h 3, and, to a lesser extent, Ara h 2 into high molecular weight protein complexes upon roasting. Relative quantification of allergens in peanut lysates was accomplished by label-free spectral feature (MS1) LC-MS/MS methodologies, by which peanut allergen peptides exhibiting a differential MS response in raw versus roasted peanuts were considered to be candidate targets of thermal modification. Identification of lysine-modified Maillard advanced glycation endproducts (AGE) by LC-MS/MS confirmed the formation of (carboxymethyl)lysine (CML), (carboxyethyl)lysine (CEL), and pyrraline (Pyr) protein modifications on Ara h 1 and Ara h 3 tryptic peptides in roasted peanut varieties. These results suggest that complex processed food matrices require initial analysis by an untargeted LC-MS/MS approach to determine optimum analytes for subsequent targeted allergen analyses.


Assuntos
Alérgenos/análise , Antígenos de Plantas/análise , Arachis/química , Alimentos em Conserva/análise , Produtos Finais de Glicação Avançada/análise , Nozes/química , Hipersensibilidade a Amendoim/prevenção & controle , Alérgenos/efeitos adversos , Alérgenos/química , Antígenos de Plantas/efeitos adversos , Antígenos de Plantas/química , Arachis/efeitos adversos , Inspeção de Alimentos/métodos , Alimentos em Conserva/efeitos adversos , Produtos Finais de Glicação Avançada/efeitos adversos , Produtos Finais de Glicação Avançada/química , Temperatura Alta/efeitos adversos , Humanos , Reação de Maillard , Nozes/efeitos adversos , Hipersensibilidade a Amendoim/etiologia , Fragmentos de Peptídeos/efeitos adversos , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Proteínas de Plantas/efeitos adversos , Proteínas de Plantas/análise , Proteínas de Plantas/química , Proteoma/efeitos adversos , Proteoma/análise , Proteoma/química , Proteômica/métodos
11.
J Proteome Res ; 11(11): 5384-95, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23020697

RESUMO

Peanuts (Arachis hypogaea) in addition to milk, eggs, fish, crustaceans, wheat, tree nuts, and soybean are commonly referred to as the "big eight" foods that contribute to the majority of food allergies worldwide. Despite the severity of allergic reactions and growing prevalence in children and adults, there is no cure for peanut allergy, leaving avoidance as the primary mode of treatment. To improve analytical methods for peanut allergen detection, researchers must overcome obstacles involved in handling complex food matrices while attempting to decipher the chemistry that underlies allergen protein interactions. To address such challenges, we conducted a global proteome characterization of raw peanuts using a sophisticated GELFrEE-PAGE-LC-MS/MS platform consisting of gel-based protein fractionation followed by mass spectrometric identification. The in-solution mass-selective protein fractionation: (1) enhances the number of unique peptide identifications, (2) provides a visual map of protein isoforms, and (3) aids in the identification of disulfide-linked protein complexes. GELFrEE-PAGE-LC-MS/MS not only overcomes many of the challenges involved in the study of plant proteomics, but enriches the understanding of peanut protein chemistry, which is typically unattainable in a traditional bottom-up proteomic analysis. A global understanding of protein chemistry in Arachis hypogaea ultimately will aid the development of improved methods for allergen detection in food.


Assuntos
Alérgenos/química , Arachis/química , Cromatografia em Gel/métodos , Proteínas de Plantas/química , Sequência de Aminoácidos , Western Blotting , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Espectrometria de Massas em Tandem
12.
J Proteome Res ; 11(4): 2127-39, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22256890

RESUMO

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and multiple reaction monitoring mass spectrometry (MRM-MS) proteomics analyses were performed on eccrine sweat of healthy controls, and the results were compared with those from individuals diagnosed with schizophrenia (SZ). This is the first large scale study of the sweat proteome. First, we performed LC-MS/MS on pooled SZ samples and pooled control samples for global proteomics analysis. Results revealed a high abundance of diverse proteins and peptides in eccrine sweat. Most of the proteins identified from sweat samples were found to be different than the most abundant proteins from serum, which indicates that eccrine sweat is not simply a plasma transudate and may thereby be a source of unique disease-associated biomolecules. A second independent set of patient and control sweat samples were analyzed by LC-MS/MS and spectral counting to determine qualitative protein differential abundances between the control and disease groups. Differential abundances of selected proteins, initially determined by spectral counting, were verified by MRM-MS analyses. Seventeen proteins showed a differential abundance of approximately 2-fold or greater between the SZ pooled sample and the control pooled sample. This study demonstrates the utility of LC-MS/MS and MRM-MS as a viable strategy for the discovery and verification of potential sweat protein disease biomarkers.


Assuntos
Glândulas Écrinas/metabolismo , Proteômica/métodos , Esquizofrenia/metabolismo , Suor/química , Adolescente , Adulto , Sequência de Aminoácidos , Biomarcadores/análise , Cromatografia Líquida/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Proteoma/análise , Espectrometria de Massas em Tandem/métodos
13.
J Proteome Res ; 10(8): 3484-92, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21736391

RESUMO

Atrial fibrillation (AF) is the most common cardiac arrhythmia affecting approximately 2.2 million Americans. Because several studies have suggested that changes in mitochondrial function and morphology may contribute to AF, we developed a novel proteomic workflow focused on the identification of differentially expressed mitochondrial proteins in AF patients. Right human atrial tissue was collected from 20 patients, 10 with and 10 without AF, and the tissue was subjected to hydrostatic pressure cycling-based lysis followed by label-free mass spectrometric (MS) analysis of mitochondrial enriched isolates. Approximately 5% of the 700 proteins identified by MS analysis were differentially expressed between the AF and non-AF samples. We chose four differentially abundant proteins for further verification using reverse phase protein microarray analysis based on their known importance in energy production and regulatory association with atrial ion channels: four and a half LIM, destrin, heat shock protein 2, and chaperonin-containing TCP1. These initial study results provide evidence that a workflow to identify AF-related proteins that combines a powerful upfront tissue cell lysis with high resolution MS for discovery and protein array technology for verification may be an effective strategy for discovering candidate markers in highly fibrous tissue samples.


Assuntos
Fibrilação Atrial/metabolismo , Mitocôndrias Cardíacas/metabolismo , Proteínas Musculares/metabolismo , Proteômica , Idoso , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade
14.
J Alzheimers Dis ; 19(3): 1081-91, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20157261

RESUMO

One of the remaining challenges in Alzheimer's disease (AD) research is the establishment of biomarkers for early disease detection. As part of a prospective study spanning a period of five years, we have collected serial serum samples from cognitively normal, mild cognitively impaired (MCI), and mild AD participants, including same patient samples before and after cognitive decline. Using mass spectrometry we identified several promising leads for biomarker development, such as prosaposin, phospholipase D1, biliverdin reductase B, and S100 calcium binding protein A7. Selected candidate markers were verified using reverse phase protein microarray assays. Of 15 protein/protein abundance ratios that were significantly altered in sera from subjects with mild AD compared to Normal or MCI subjects, 14 were composed of ratios containing heme oxygenase-1, biliverdin reductase A, or biliverdin reductase B. Moreover, an increase in the protein abundance ratio of matrix metallopeptidase 9/biliverdin reductase differentiated stable MCI subjects from MCI subjects progressing into mild AD before the onset of cognitive decline. These findings strongly implicate the heme degradation pathway as a promising source of protein biomarkers for the early detection of AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Heme Oxigenase-1/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Transtornos Cognitivos/diagnóstico , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Espectrometria de Massas , Metaloproteinase 9 da Matriz/metabolismo , Testes Neuropsicológicos , Fosfolipase D/metabolismo , Análise Serial de Proteínas , Índice de Gravidade de Doença
15.
PLoS One ; 4(10): e7670, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19888321

RESUMO

BACKGROUND: Ovarian cancer is the 5th leading cause of cancer related deaths in women. Five-year survival rates for early stage disease are greater than 94%, however most women are diagnosed in advanced stage with 5 year survival less than 28%. Improved means for early detection and reliable patient monitoring are needed to increase survival. METHODOLOGY AND PRINCIPAL FINDINGS: Applying mass spectrometry-based proteomics, we sought to elucidate an unanswered biomarker research question regarding ability to determine tumor burden detectable by an ovarian cancer biomarker protein emanating directly from the tumor cells. Since aggressive serous epithelial ovarian cancers account for most mortality, a xenograft model using human SKOV-3 serous ovarian cancer cells was established to model progression to disseminated carcinomatosis. Using a method for low molecular weight protein enrichment, followed by liquid chromatography and mass spectrometry analysis, a human-specific peptide sequence of S100A6 was identified in sera from mice with advanced-stage experimental ovarian carcinoma. S100A6 expression was documented in cancer xenografts as well as from ovarian cancer patient tissues. Longitudinal study revealed that serum S100A6 concentration is directly related to tumor burden predictions from an inverse regression calibration analysis of data obtained from a detergent-supplemented antigen capture immunoassay and whole-animal bioluminescent optical imaging. The result from the animal model was confirmed in human clinical material as S100A6 was found to be significantly elevated in the sera from women with advanced stage ovarian cancer compared to those with early stage disease. CONCLUSIONS: S100A6 is expressed in ovarian and other cancer tissues, but has not been documented previously in ovarian cancer disease sera. S100A6 is found in serum in concentrations that correlate with experimental tumor burden and with clinical disease stage. The data signify that S100A6 may prove useful in detecting and/or monitoring ovarian cancer, when used in concert with other biomarkers.


Assuntos
Biomarcadores Tumorais , Proteínas de Ciclo Celular/sangue , Regulação Neoplásica da Expressão Gênica , Espectrometria de Massas/métodos , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/genética , Proteômica/métodos , Proteínas S100/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Metástase Neoplásica , Transplante de Neoplasias , Proteína A6 Ligante de Cálcio S100
16.
J Proteome Res ; 8(12): 5523-31, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19824718

RESUMO

Phosphorylation is a dynamic post-translational protein modification that is the basis of a general mechanism for maintaining and regulating protein structure and function, and of course underpins key cellular processes through signal transduction. In the last several years, many studies of large-scale profiling of phosphoproteins and mapping phosphorylation sites from cultured human cells or tissues by mass spectrometry technique have been published; however, there is little information on general (or global) phosphoproteomic characterization and description of the content of phosphoprotein analytes within the circulation. Circulating phosphoproteins and phosphopeptides could represent important disease biomarkers because of their well-known importance in cellular function, and these analytes frequently are mutated and activated in human diseases such as cancer. Here, we report an initial attempt to characterize the phosphoprotein content of serum. To accomplish this, we developed a method in which phosphopeptides are enriched from digested serum proteins and analyzed by LC-MS/MS using LTQ-Orbitrap (CID) and LTQ-ETD mass spectrometers. With this approach, we identified approximately 100 unique phosphopeptides with stringent filtering criteria and a lower than 1% false discovery rate.


Assuntos
Proteínas Sanguíneas/análise , Fosfoproteínas/sangue , Proteoma/análise , Proteômica/métodos , Cromatografia Líquida , Humanos , Métodos , Fosfopeptídeos/sangue , Espectrometria de Massas em Tandem
17.
PLoS One ; 4(3): e4763, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19274087

RESUMO

BACKGROUND: The blood proteome is thought to represent a rich source of biomarkers for early stage disease detection. Nevertheless, three major challenges have hindered biomarker discovery: a) candidate biomarkers exist at extremely low concentrations in blood; b) high abundance resident proteins such as albumin mask the rare biomarkers; c) biomarkers are rapidly degraded by endogenous and exogenous proteinases. METHODOLOGY AND PRINCIPAL FINDINGS: Hydrogel nanoparticles created with a N-isopropylacrylamide based core (365 nm)-shell (167 nm) and functionalized with a charged based bait (acrylic acid) were studied as a technology for addressing all these biomarker discovery problems, in one step, in solution. These harvesting core-shell nanoparticles are designed to simultaneously conduct size exclusion and affinity chromatography in solution. Platelet derived growth factor (PDGF), a clinically relevant, highly labile, and very low abundance biomarker, was chosen as a model. PDGF, spiked in human serum, was completely sequestered from its carrier protein albumin, concentrated, and fully preserved, within minutes by the particles. Particle sequestered PDGF was fully protected from exogenously added tryptic degradation. When the nanoparticles were added to a 1 mL dilute solution of PDGF at non detectable levels (less than 20 picograms per mL) the concentration of the PDGF released from the polymeric matrix of the particles increased within the detection range of ELISA and mass spectrometry. Beyond PDGF, the sequestration and protection from degradation for a series of additional very low abundance and very labile cytokines were verified. CONCLUSIONS AND SIGNIFICANCE: We envision the application of harvesting core-shell nanoparticles to whole blood for concentration and immediate preservation of low abundance and labile analytes at the time of venipuncture.


Assuntos
Biomarcadores/sangue , Hidrogel de Polietilenoglicol-Dimetacrilato , Nanopartículas , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/metabolismo , Técnicas de Laboratório Clínico , Citocinas/sangue , Citocinas/metabolismo , Nanopartículas/química , Fator de Crescimento Derivado de Plaquetas/análise , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteômica/métodos
18.
Nano Lett ; 8(1): 350-61, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18076201

RESUMO

Disease-associated blood biomarkers exist in exceedingly low concentrations within complex mixtures of high-abundance proteins such as albumin. We have introduced an affinity bait molecule into N-isopropylacrylamide to produce a particle that will perform three independent functions within minutes, in one step, in solution: (a) molecular size sieving, (b) affinity capture of all solution-phase target molecules, and (c) complete protection of harvested proteins from enzymatic degradation. The captured analytes can be readily electroeluted for analysis.


Assuntos
Biomarcadores , Cromatografia de Afinidade/métodos , Cromatografia em Gel/métodos , Hidrogéis , Hidrólise
19.
Thromb Haemost ; 97(1): 67-80, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17200773

RESUMO

Microparticles (MPs) are small membrane vesicles generated by essentially all cell types. In the plasma, most MPs are derived from platelets, but those from other sources, particularly leukocytes (macrophages, lymphocytes, and neutrophils), endothelial cells, and even smooth muscle cells can be detected and appear to play an important role in normal physiology and various diseases. In previous work we analyzed the proteome of MPs generated from isolated platelets (platelet MPs). Here, we report on a comparative analysis of microparticles isolated from plasma (plasma MPs) versus platelet MP using two complementary methods of comparative analysis. The first method, spectral count analysis, yielded 21 proteins detected in plasma MPs (with a total spectral count of 10 or greater) that were essentially absent in platelet MPs (with a total spectral count of 1 or 0). An additional two proteins (von Willebrand Factor, albumin) were present in both types of MPs but enriched in the plasma MPs. The second method, isotope-coded affinity tag (ICAT) labeling of proteins, supported the spectral count results for the more abundant proteins and provided better relative quantitation of differentially expressed proteins. Proteins present only in the plasma MPs include several associated with apoptosis (CD5-like antigen, galectin 3 binding protein, several complement components), iron transport (transferrin, transferrin receptor, haptoglobin), immune response (complement components, immunoglobulin J and kappa chains), and the coagulation process (protein S, coagulation factor VIII).


Assuntos
Plaquetas/química , Plasma/química , Proteínas/análise , Proteômica/métodos , Apoptose , Coagulação Sanguínea , Membrana Celular/química , Humanos , Imunidade , Ferro/metabolismo , Tamanho da Partícula
20.
J Proteome Res ; 5(10): 2789-99, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17022650

RESUMO

Dysregulated protein phosphorylation is a primary culprit in multiple physiopathological states. Hence, although analysis of signaling cascades on a proteome-wide scale would provide significant insight into both normal and aberrant cellular function, such studies are simultaneously limited by sheer biological complexity and concentration dynamic range. In principle, immobilized metal affinity chromatography (IMAC) represents an ideal enrichment method for phosphoproteomics. However, anecdotal evidence suggests that this technique is not widely and successfully applied beyond analysis of simple standards, gel bands, and targeted protein immunoprecipitations. Here, we report significant improvements in IMAC-based methodology for enrichment of phosphopeptides from complex biological mixtures. Moreover, we provide detailed explanation for key variables that in our hands most influenced the outcome of these experiments. Our results indicate 5- to 10-fold improvement in recovery of singly- and multiply phosphorylated peptide standards in addition to significant improvement in the number of high-confidence phosphopeptide sequence assignments from global analysis of cellular lysate. In addition, we quantitatively track phosphopeptide recovery as a function of phosphorylation state, and provide guidance for impedance-matching IMAC column capacity with anticipated phosphopeptide content of complex mixtures. Finally, we demonstrate that our improved methodology provides for identification of phosphopeptide distributions that closely mimic physiological conditions.


Assuntos
Cromatografia de Afinidade/métodos , Metais/química , Fosfopeptídeos/análise , Proteômica/métodos , Sequência de Aminoácidos , Soluções Tampão , Humanos , Dados de Sequência Molecular , Fosforilação , Análise de Sequência de Proteína , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...