Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cancers (Basel) ; 13(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919717

RESUMO

The alteration of RNA modification patterns is emerging as a common feature of human malignancies. If these changes affect key RNA molecules for mRNA translation, such as transfer RNA, they can have important consequences for cell transformation. TRIT1 is the enzyme responsible for the hypermodification of adenosine 37 in the anticodon region of human tRNAs containing serine and selenocysteine. Herein, we show that TRIT1 undergoes gene amplification-associated overexpression in cancer cell lines and primary samples of small-cell lung cancer. From growth and functional standpoints, the induced depletion of TRIT1 expression in amplified cells reduces their tumorigenic potential and downregulates the selenoprotein transcripts. We observed that TRIT1-amplified cells are sensitive to arsenic trioxide, a compound that regulates selenoproteins, whereas reduction of TRIT1 levels confers loss of sensitivity to the drug. Overall, our results indicate a role for TRIT1 as a small-cell lung cancer-relevant gene that, when undergoing gene amplification-associated activation, can be targeted with the differentiation agent arsenic trioxide.

3.
Proc Natl Acad Sci U S A ; 117(34): 20785-20793, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32778592

RESUMO

Transfer RNA (tRNA) activity is tightly regulated to provide a physiological protein translation, and tRNA chemical modifications control its function in a complex with ribosomes and messenger RNAs (mRNAs). In this regard, the correct hypermodification of position G37 of phenylalanine-tRNA, adjacent to the anticodon, is critical to prevent ribosome frameshifting events. Here we report that the tRNA-yW Synthesizing Protein 2 (TYW2) undergoes promoter hypermethylation-associated transcriptional silencing in human cancer, particularly in colorectal tumors. The epigenetic loss of TYW2 induces guanosine hypomodification in phenylalanine-tRNA, an increase in -1 ribosome frameshift events, and down-regulation of transcripts by mRNA decay, such as of the key cancer gene ROBO1. Importantly, TYW2 epigenetic inactivation is linked to poor overall survival in patients with early-stage colorectal cancer, a finding that could be related to the observed acquisition of enhanced migration properties and epithelial-to-mesenchymal features in the colon cancer cells that harbor TYW2 DNA methylation-associated loss. These findings provide an illustrative example of how epigenetic changes can modify the epitranscriptome and further support a role for tRNA modifications in cancer biology.


Assuntos
Neoplasias do Colo/genética , Mudança da Fase de Leitura do Gene Ribossômico , RNA de Transferência/genética , Ribossomos/genética , tRNA Metiltransferases/deficiência , Adulto , Idoso , Anticódon/genética , Anticódon/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/enzimologia , Neoplasias do Colo/metabolismo , Ilhas de CpG , Epigênese Genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Conformação de Ácido Nucleico , Fenilalanina/genética , Fenilalanina/metabolismo , Regiões Promotoras Genéticas , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Ribossomos/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
4.
Blood Cancer Discov ; 1(1): 26-31, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-34661141

RESUMO

Since the 1960s, a large number of chemical modifications have been identified in RNA molecules, establishing the RNA epigenetics field named "epitranscriptomics." These chemical marks participate in several RNA metabolic processes; however, the biological relevance of many of these modifications and the many enzymes involved in their function is not completely understood. Emerging knowledge of the epitranscriptome (pseudouridine, N6-methyladenosine, and A-to-I editing) in hematopoiesis and hematologic malignancies reveals the requirement of these modifications in normal development and their alteration in disorders, leading to the development of new molecules and strategies to target the epitranscriptome as a novel therapeutic approach. RNA modifications are required for the correct development of hematopoietic cells, and their alteration can promote the development of malignancies or the transition from a low-grade to an aggressive disease. While we are expanding our understanding of the epitranscriptome of normal and malignant hematopoiesis, the number of potential new therapeutic interventions is rising.


Assuntos
Neoplasias Hematológicas , Hematopoese , Epigenômica , Neoplasias Hematológicas/genética , Hematopoese/genética , Humanos , RNA/genética , Processamento Pós-Transcricional do RNA
5.
Acta Neuropathol ; 138(6): 1053-1074, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31428936

RESUMO

Tumors have aberrant proteomes that often do not match their corresponding transcriptome profiles. One possible cause of this discrepancy is the existence of aberrant RNA modification landscapes in the so-called epitranscriptome. Here, we report that human glioma cells undergo DNA methylation-associated epigenetic silencing of NSUN5, a candidate RNA methyltransferase for 5-methylcytosine. In this setting, NSUN5 exhibits tumor-suppressor characteristics in vivo glioma models. We also found that NSUN5 loss generates an unmethylated status at the C3782 position of 28S rRNA that drives an overall depletion of protein synthesis, and leads to the emergence of an adaptive translational program for survival under conditions of cellular stress. Interestingly, NSUN5 epigenetic inactivation also renders these gliomas sensitive to bioactivatable substrates of the stress-related enzyme NQO1. Most importantly, NSUN5 epigenetic inactivation is a hallmark of glioma patients with long-term survival for this otherwise devastating disease.


Assuntos
Neoplasias Encefálicas/metabolismo , Epigênese Genética , Glioma/metabolismo , Metiltransferases/metabolismo , Proteínas Musculares/metabolismo , Biossíntese de Proteínas/fisiologia , Ribossomos/metabolismo , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Metilação de DNA , Humanos , Metiltransferases/genética , Camundongos Nus , Proteínas Musculares/genética , Transplante de Neoplasias , RNA Ribossômico 28S
6.
JCI Insight ; 52019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30843871

RESUMO

The endoplasmic reticulum (ER) of cancer cells needs to adapt to the enhanced proteotoxic stress associated with the accumulation of unfolded, misfolded and transformation-associated proteins. One way by which tumors thrive in the context of ER stress is by promoting ER-Associated Degradation (ERAD), although the mechanisms are poorly understood. Here, we show that the Small p97/VCP Interacting Protein (SVIP), an endogenous inhibitor of ERAD, undergoes DNA hypermethylation-associated silencing in tumorigenesis to achieve this goal. SVIP exhibits tumor suppressor features and its recovery is associated with increased ER stress and growth inhibition. Proteomic and metabolomic analyses show that cancer cells with epigenetic loss of SVIP are depleted in mitochondrial enzymes and oxidative respiration activity. This phenotype is reverted upon SVIP restoration. The dependence of SVIP hypermethylated cancer cells on aerobic glycolysis and glucose was also associated with sensitivity to an inhibitor of the glucose transporter GLUT1. This could be relevant to the management of tumors carrying SVIP epigenetic loss, because these occur in high-risk patients who manifest poor clinical outcomes. Overall, our study provides insights into how epigenetics helps deal with ER stress and how SVIP epigenetic loss in cancer may be amenable to therapies that target glucose transporters.


Assuntos
Reprogramação Celular/fisiologia , Degradação Associada com o Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Epigenômica , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Animais , Carcinogênese , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Reprogramação Celular/genética , Metilação de DNA , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Transportador de Glucose Tipo 1 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/farmacologia , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Neoplasias/genética , Fenótipo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/farmacologia , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...