Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 787: 93-103, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21898230

RESUMO

CHIP, the carboxyl-terminus of Hsp70 interacting protein, is both an E3 ubiquitin ligase and an Hsp70 co-chaperone and is implicated in the degradation of cytosolic quality control and numerous disease substrates. CHIP has been shown to monitor the folding status of the CFTR protein, and we have successfully reconstituted this activity using a recombinant CFTR fragment consisting of the cytosolic NBD1 and R domains. We have found that efficient ubiquitination of substrates requires chaperone activity to either deliver the substrate to CHIP or to maintain the substrate in a ubiquitination-competent conformation. This chaperone activity can be provided by the Hsp70/Hsp40 molecular chaperone system as seen in the NBD1-R ubiquitination assay. Alternatively, heat treatment of CHIP can activate its own innate substrate-binding activity and allow for efficient ubiquitination of model substrates, such as denatured luciferase. Here, we describe methods for purifying the recombinant proteins necessary for in vitro reconstitution of CHIP ubiquitin ligase activity, as well as two methods used to monitor CHIP ligase activity. One method allows for the measurement of the Hsp70- and Hsp40-dependent CHIP activity while the other measures the Hsp40- and Hsp70-independent activity of heat-activated CHIP.


Assuntos
Ubiquitina-Proteína Ligases/análise , Ubiquitinação , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Ligação Proteica , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
2.
Methods Mol Biol ; 741: 219-32, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21594788

RESUMO

Misfolding and premature degradation of F508del-CFTR is the major cause of cystic fibrosis. Components of the ubiquitin-proteasome system function on the surface of the endoplasmic reticulum to select misfolded proteins for degradation. The folding status of F508del-CFTR is monitored by at least two ER quality control checkpoints. The ER-associated Derlin-1/RMA1 E3 complex appears to recognize folding defects in CFTR that involve misassembly of NBD1 into a complex with the R-domain. In contrast, the cytosolic Hsp70/CHIP E3 complex appears to sense folding defects that occur after synthesis of NBD2. Herein we describe methods that allow for the study of how modulation of these ER quality control factors by siRNA impacts CFTR folding and degradation. The experimental system described employs transiently transfected HEK293 cells and is utilized to monitor the biogenesis of CFTR by both Western blot and pulse chase studies. Methods to detect complexes formed between CFTR folding intermediates and ER quality control factors will also be described.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Dobramento de Proteína , Sequência de Bases , Western Blotting , Proliferação de Células , Separação Celular , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Retículo Endoplasmático/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Imunoprecipitação , Cinética , Controle de Qualidade , RNA Interferente Pequeno/genética , Deleção de Sequência , Fatores de Tempo , Transfecção , Ubiquitina-Proteína Ligases/metabolismo
3.
Mol Biol Cell ; 20(18): 4059-69, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19625452

RESUMO

Premature degradation of CFTRDeltaF508 causes cystic fibrosis (CF). CFTRDeltaF508 folding defects are conditional and folding correctors are being developed as CF therapeutics. How the cellular environment impacts CFTRDeltaF508 folding efficiency and the identity of CFTRDeltaF508's correctable folding defects is unclear. We report that inactivation of the RMA1 or CHIP ubiquitin ligase permits a pool of CFTRDeltaF508 to escape the endoplasmic reticulum. Combined RMA1 or CHIP inactivation and Corr-4a treatment enhanced CFTRDeltaF508 folding to 3-7-fold greater levels than those elicited by Corr-4a. Some, but not all, folding defects in CFTRDeltaF508 are correctable. CHIP and RMA1 recognize different regions of CFTR and a large pool of nascent CFTRDeltaF508 is ubiquitinated by RMA1 before Corr-4a action. RMA1 recognizes defects in CFTRDeltaF508 related to misassembly of a complex that contains MSD1, NBD1, and the R-domain. Corr-4a acts on CFTRDeltaF508 after MSD2 synthesis and was ineffective at rescue of DeltaF508 dependent folding defects in amino-terminal regions. In contrast, misfolding caused by the rare CF-causing mutation V232D in MSD1 was highly correctable by Corr-4a. Overall, correction of folding defects recognized by RMA1 and/or global modulation of ER quality control has the potential to increase CFTRDeltaF508 folding and provide a therapeutic approach for CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Dobramento de Proteína , Linhagem Celular , Fibrose Cística/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Conformação Proteica , Dobramento de Proteína/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Supressão Genética/efeitos dos fármacos , Tiazóis/química , Tiazóis/farmacologia
4.
Mol Biol Cell ; 19(11): 4570-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18716059

RESUMO

Cystic fibrosis transmembrane conductance regulator (CFTR) is a polytopic membrane protein that functions as a Cl(-) channel and consists of two membrane spanning domains (MSDs), two cytosolic nucleotide binding domains (NBDs), and a cytosolic regulatory domain. Cytosolic 70-kDa heat shock protein (Hsp70), and endoplasmic reticulum-localized calnexin are chaperones that facilitate CFTR biogenesis. Hsp70 functions in both the cotranslational folding and posttranslational degradation of CFTR. Yet, the mechanism for calnexin action in folding and quality control of CFTR is not clear. Investigation of this question revealed that calnexin is not essential for CFTR or CFTRDeltaF508 degradation. We identified a dependence on calnexin for proper assembly of CFTR's membrane spanning domains. Interestingly, efficient folding of NBD2 was also found to be dependent upon calnexin binding to CFTR. Furthermore, we identified folding defects caused by deletion of F508 that occurred before and after the calnexin-dependent association of MSD1 and MSD2. Early folding defects are evident upon translation of the NBD1 and R-domain and are sensed by the RMA-1 ubiquitin ligase complex.


Assuntos
Calnexina/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Dobramento de Proteína , Deleção de Sequência , Linhagem Celular , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Indolizinas/farmacologia , Modelos Moleculares , Proteínas Mutantes/metabolismo , Ligação Proteica/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Estrutura Terciária de Proteína , Deleção de Sequência/efeitos dos fármacos
5.
BMC Biochem ; 8 Suppl 1: S11, 2007 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-18047735

RESUMO

CF is an inherited autosomal recessive disease whose lethality arises from malfunction of CFTR, a single chloride (Cl-) ion channel protein. CF patients harbor mutations in the CFTR gene that lead to misfolding of the resulting CFTR protein, rendering it inactive and mislocalized. Hundreds of CF-related mutations have been identified, many of which abrogate CFTR folding in the endoplasmic reticulum (ER). More than 70% of patients harbor the DeltaF508 CFTR mutation that causes misfolding of the CFTR proteins. Consequently, mutant CFTR is unable to reach the apical plasma membrane of epithelial cells that line the lungs and gut, and is instead targeted for degradation by the UPS. Proteins located in both the cytoplasm and ER membrane are believed to identify misfolded CFTR for UPS-mediated degradation. The aberrantly folded CFTR protein then undergoes polyubiquitylation, carried out by an E1-E2-E3 ubiquitin ligase system, leading to degradation by the 26S proteasome. This ubiquitin-dependent loss of misfolded CFTR protein can be inhibited by the application of 'corrector' drugs that aid CFTR folding, shielding it from the UPS machinery. Corrector molecules elevate cellular CFTR protein levels by protecting the protein from degradation and aiding folding, promoting its maturation and localization to the apical plasma membrane. Combinatory application of corrector drugs with activator molecules that enhance CFTR Cl- ion channel activity offers significant potential for treatment of CF patients. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com).


Assuntos
Fibrose Cística/enzimologia , Complexo de Endopeptidases do Proteassoma/fisiologia , Complexos Ubiquitina-Proteína Ligase/fisiologia , Animais , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos
6.
J Biol Chem ; 282(31): 22267-77, 2007 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-17545168

RESUMO

The carboxyl terminus of the Hsc70-interacting protein (CHIP) is an Hsp70 co-chaperone as well as an E3 ubiquitin ligase that protects cells from proteotoxic stress. The abilities of CHIP to interact with Hsp70 and function as a ubiquitin ligase place CHIP at a pivotal position in the protein quality control system, where its entrance into Hsp70-substrate complexes partitions nonnative proteins toward degradation. However, the manner by which Hsp70 substrates are selected for ubiquitination by CHIP is not well understood. We discovered that CHIP possesses an intrinsic chaperone activity that enables it to selectively recognize and bind nonnative proteins. Interestingly, the chaperone function of CHIP is temperature-sensitive and is dramatically enhanced by heat stress. The ability of CHIP to recognize nonnative protein structure may aid in selection of slow folding or misfolded polypeptides for ubiquitination.


Assuntos
Chaperonas Moleculares/química , Ubiquitina-Proteína Ligases/química , Linhagem Celular , Reagentes de Ligações Cruzadas/farmacologia , Ensaio de Imunoadsorção Enzimática , Temperatura Alta , Humanos , Proteína Huntingtina , Luciferases/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas Nucleares/química , Desnaturação Proteica , Dobramento de Proteína , Proteínas/química , Tiossulfato Sulfurtransferase/metabolismo , Ubiquitina/química
7.
Cell ; 126(3): 571-82, 2006 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-16901789

RESUMO

Cystic fibrosis arises from the misfolding and premature degradation of CFTR Delta F508, a Cl- ion channel with a single amino acid deletion. Yet, the quality-control machinery that selects CFTR Delta F508 for degradation and the mechanism for its misfolding are not well defined. We identified an ER membrane-associated ubiquitin ligase complex containing the E3 RMA1, the E2 Ubc6e, and Derlin-1 that cooperates with the cytosolic Hsc70/CHIP E3 complex to triage CFTR and CFTR Delta F508. Derlin-1 serves to retain CFTR in the ER membrane and interacts with RMA1 and Ubc6e to promote CFTR's proteasomal degradation. RMA1 is capable of recognizing folding defects in CFTR Delta F508 coincident with translation, whereas the CHIP E3 appears to act posttranslationally. A folding defect in CFTR Delta F508 detected by RMA1 involves the inability of CFTR's second membrane-spanning domain to productively interact with amino-terminal domains. Thus, the RMA1 and CHIP E3 ubiquitin ligases act sequentially in ER membrane and cytosol to monitor the folding status of CFTR and CFTR Delta F508.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/fisiopatologia , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Proteínas de Choque Térmico HSC70/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Dobramento de Proteína , Processamento de Proteína Pós-Traducional/fisiologia , Estrutura Terciária de Proteína/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
8.
Methods Mol Biol ; 301: 293-303, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15917641

RESUMO

Components of the ubiquitin-proteasome system function on the surface of the endoplasmic reticulum (ER) to select misfolded proteins for degradation. Herein we describe methods that allow for the study of the pathway for proteasomal degradation of the cystic fibrosis transmembrane conductance regulator (CFTR). The experimental system described employs transiently transfected HEK-293 cells and is utilized to monitor the biogenesis of CFTR by Western blot and pulse-chase analysis.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Retículo Endoplasmático/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Expressão Gênica , Humanos , Modelos Moleculares , Transfecção
9.
Biochemistry ; 43(27): 8835-45, 2004 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-15236592

RESUMO

The molecular chaperone heat shock protein 90 (Hsp90) serves essential roles in the regulation of signaling protein function, trafficking, and turnover. Hsp90 function is intimately linked to intrinsic ATP binding and hydrolysis activities, the latter of which is under the regulatory control of accessory factors. Glucose-regulated protein of 94 kDa (GRP94), the endoplasmic reticulum Hsp90, is highly homologous to cytosolic Hsp90. However, neither accessory factors nor adenosine nucleotides have been clearly implicated in the regulation of GRP94-client protein interactions. In the current study, the structural and regulatory consequences of adenosine nucleotide binding to GRP94 were investigated. We report that apo-GRP94 undergoes a time- and temperature-dependent tertiary conformational change that exposes a site(s) of protein-protein interaction; ATP, ADP, and radicicol markedly suppress this conformational change. In concert with these findings, ATP and ADP act identically to suppress GRP94 homooligomerization, as well as both local and global conformational activity. To identify a role(s) for ATP or ADP in the regulation of GRP94-client protein interactions, immunoglobulin (Ig) heavy chain folding intermediates containing bound GRP94 and immunoglobulin binding protein (BiP) were isolated from myeloma cells, and the effects of adenosine nucleotides on chaperone-Ig heavy chain interactions were examined. Whereas ATP elicited efficient release of BiP from both wild-type and mutant Ig heavy chain intermediates, GRP94 remained in stable association with Ig heavy chains in the presence of ATP or ADP. On the basis of these data, we propose that structural maturation of the client protein substrate, rather than ATP binding or hydrolysis, serves as the primary signal for dissociation of GRP94-client protein complexes.


Assuntos
Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Imunoglobulinas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Apoproteínas/química , Apoproteínas/metabolismo , Cães , Hidrólise , Imunoglobulinas/química , Ligantes , Ligação Proteica , Dobramento de Proteína , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Espectrometria de Fluorescência , Suínos , Temperatura , Fatores de Tempo
10.
Mol Biol Cell ; 15(2): 637-48, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14617820

RESUMO

NSF and p97 are related AAA proteins implicated in membrane trafficking and organelle biogenesis. p97 is also involved in pathways that lead to ubiquitin-dependent proteolysis, including ER-associated degradation (ERAD). In this study, we have used dominant interfering ATP-hydrolysis deficient mutants (NSF(E329Q) and p97(E578Q)) to compare the function of these AAA proteins in the secretory pathway of mammalian cells. Expressing NSF(E329Q) promotes disassembly of Golgi stacks into dispersed vesicular structures. It also rapidly inhibits glycosaminoglycan sulfation, reflecting disruption of intra-Golgi transport. In contrast, expressing p97(E578Q) does not affect Golgi structure or function; glycosaminoglycans are normally sulfated and secreted, as is the VSV-G ts045 protein. Instead, expression of p97(E578Q) causes ubiquitinated proteins to accumulate on ER membranes and slows degradation of the ERAD substrate cystic-fibrosis transmembrane-conductance regulator. In addition, expression of p97(E578Q) eventually causes the ER to swell. More specific assessment of effects of p97(E578Q) on organelle assembly shows that the Golgi apparatus disperses and reassembles normally after treatment with brefeldin A and during mitosis. These findings demonstrate that ATP-hydrolysis-dependent activities of NSF and p97 in the cell are not equivalent and suggest that only NSF is directly involved in regulating membrane fusion.


Assuntos
Adenosina Trifosfatases/metabolismo , Complexo de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Fusão de Membrana/fisiologia , Proteínas Nucleares/metabolismo , Animais , Brefeldina A/farmacologia , Células Cultivadas , Clonagem Molecular , Retículo Endoplasmático/metabolismo , Glicosaminoglicanos/metabolismo , Proteínas de Fluorescência Verde , Humanos , Proteínas Luminescentes/metabolismo , Fusão de Membrana/efeitos dos fármacos , Microscopia Eletrônica , Mutação/genética , Estrutura Terciária de Proteína/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...