Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 43(1): 198, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39020414

RESUMO

Pancreatic cancer (PC) is a clinically challenging tumor to combat due to its advanced stage at diagnosis as well as its resistance to currently available therapies. The absence of early symptoms and known detectable biomarkers renders this disease incredibly difficult to detect/manage. Recent advances in the understanding of PC biology have highlighted the importance of cancer-immune cell interactions, not only in the tumor micro-environment but also in distant systemic sites, like the bone marrow, spleen and circulating immune cells, the so-called macro-environment. The response of the macro-environment is emerging as a determining factor in tumor development by contributing to the formation of an increasingly immunogenic micro-environment promoting tumor homeostasis and progression. We will summarize the key events associated with the feedback loop between the tumor immune micro-environment (TIME) and the tumor immune macroenvironment (TIMaE) in pancreatic precancerous lesions along with how it regulates disease development and progression. In addition, liquid biopsy biomarkers capable of diagnosing PC at an early stage of onset will also be discussed. A clearer understanding of the early crosstalk between micro-environment and macro-environment could contribute to identifying new molecular therapeutic targets and biomarkers, consequently improving early PC diagnosis and treatment.


Assuntos
Biomarcadores Tumorais , Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/metabolismo , Biomarcadores Tumorais/sangue , Lesões Pré-Cancerosas/patologia , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/sangue , Progressão da Doença
2.
Environ Res ; 244: 117936, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109963

RESUMO

The presence of plastic fragments in aquatic environments, particularly at the micro- and nano-scale, has become a significant global concern. However, current detection methods are limited in their ability to reveal the presence of such particles in liquid samples. In this study, we propose the use of a fluorescence lifetime analysis system for the detection of micro- and nanoplastics in water. This approach relies on the inherent endogenous fluorescence of plastic materials and involves the collection of single photons emitted by plastic fragments upon exposure to a pulsed laser beam. Briefly, a pulsed laser beam (repetition frequency = 40 MHz) shines onto a sample solution, and the emitted light is filtered, collected, and used to trace the time distributions of the photons with high temporal resolution. Finally, the fluorescence lifetime was measured using fitting procedures and a phasor analysis. Phasor analysis is a fit-free method that allows the measurement of the fluorescence lifetime of a sample without any assumptions or prior knowledge of the sample decay pattern. The developed instrument was tested using fluorescence references and validated using unlabelled micro- and nano-scale particles. Our system successfully detected polystyrene particles in water, achieving a remarkable sensitivity with a detection limit of 0.01 mg/mL, without the need for sample pre-treatment or visual inspection. Although further studies are necessary to enhance the detection limit of the technique and distinguish between different plastic materials, this proof-of-concept study suggests the potential of the fluorescence lifetime-based approach as a rapid, robust, and cost-effective method for early warning detection and identification of plastic contaminants in aquatic environments.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Água , Fluorescência , Poluentes Químicos da Água/análise , Poliestirenos/análise , Plásticos/análise
3.
Nat Commun ; 13(1): 7406, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456575

RESUMO

Fluorescence laser-scanning microscopy (LSM) is experiencing a revolution thanks to new single-photon (SP) array detectors, which give access to an entirely new set of single-photon information. Together with the blooming of new SP LSM techniques and the development of tailored SP array detectors, there is a growing need for (i) DAQ systems capable of handling the high-throughput and high-resolution photon information generated by these detectors, and (ii) incorporating these DAQ protocols in existing fluorescence LSMs. We developed an open-source, low-cost, multi-channel time-tagging module (TTM) based on a field-programmable gate array that can tag in parallel multiple single-photon events, with 30 ps precision, and multiple synchronisation events, with 4 ns precision. We use the TTM to demonstrate live-cell super-resolved fluorescence lifetime image scanning microscopy and fluorescence lifetime fluctuation spectroscopy. We expect that our BrightEyes-TTM will support the microscopy community in spreading SP-LSM in many life science laboratories.


Assuntos
Neoplasias de Células Escamosas , Neoplasias Cutâneas , Humanos , Microscopia Confocal , Fótons
4.
Nat Methods ; 18(5): 542-550, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33859440

RESUMO

Fluorescence lifetime imaging microscopy (FLIM) and spectral imaging are two broadly applied methods for increasing dimensionality in microscopy. However, their combination is typically inefficient and slow in terms of acquisition and processing. By integrating technological and computational advances, we developed a robust and unbiased spectral FLIM (S-FLIM) system. Our method, Phasor S-FLIM, combines true parallel multichannel digital frequency domain electronics with a multidimensional phasor approach to extract detailed and precise information about the photophysics of fluorescent specimens at optical resolution. To show the flexibility of the Phasor S-FLIM technology and its applications to the biological and biomedical field, we address four common, yet challenging, problems: the blind unmixing of spectral and lifetime signatures from multiple unknown species, the unbiased bleedthrough- and background-free Förster resonance energy transfer analysis of biosensors, the photophysical characterization of environment-sensitive probes in living cells and parallel four-color FLIM imaging in tumor spheroids.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Processamento de Imagem Assistida por Computador/métodos , Imagem Óptica/métodos , Simulação por Computador , Humanos , Microscopia de Fluorescência/métodos , Neoplasias , Esferoides Celulares
5.
Sci Rep ; 6: 25879, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27165510

RESUMO

Lipofectamine reagents are widely accepted as "gold-standard" for the safe delivery of exogenous DNA or RNA into cells. Despite this, a satisfactory mechanism-based explanation of their superior efficacy has remained mostly elusive thus far. Here we apply a straightforward combination of live cell imaging, single-particle tracking microscopy, and quantitative transfection-efficiency assays on live cells to unveil the intracellular trafficking mechanism of Lipofectamine/DNA complexes. We find that Lipofectamine, contrary to alternative formulations, is able to efficiently avoid active intracellular transport along microtubules, and the subsequent entrapment and degradation of the payload within acidic/digestive lysosomal compartments. This result is achieved by random Brownian motion of Lipofectamine-containing vesicles within the cytoplasm. We demonstrate here that Brownian diffusion is an efficient route for Lipofectamine/DNA complexes to avoid metabolic degradation, thus leading to optimal transfection. By contrast, active transport along microtubules results in DNA degradation and subsequent poor transfection. Intracellular trafficking, endosomal escape and lysosomal degradation appear therefore as highly interdependent phenomena, in such a way that they should be viewed as a single barrier on the route for efficient transfection. As a matter of fact, they should be evaluated in their entirety for the development of optimized non-viral gene delivery vectors.


Assuntos
Núcleo Celular/genética , Citoplasma/genética , DNA/genética , Lipídeos/química , Animais , Transporte Biológico , Células CHO , Núcleo Celular/metabolismo , Cricetulus , Citoplasma/metabolismo , DNA/química , DNA/metabolismo , Terapia Genética , Vetores Genéticos , Humanos , Imagem Individual de Molécula , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...