Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brief Funct Genomics ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38880995

RESUMO

40 years ago, organelle genomes were assumed to be streamlined and, perhaps, unexciting remnants of their prokaryotic past. However, the field of organelle genomics has exposed an unparallel diversity in genome architecture (i.e. genome size, structure, and content). The transcription of these eccentric genomes can be just as elaborate - organelle genomes are pervasively transcribed into a plethora of RNA types. However, while organelle protein-coding genes are known to produce polycistronic transcripts that undergo heavy posttranscriptional processing, the nature of organelle noncoding transcriptomes is still poorly resolved. Here, we review how wet-lab experiments and second-generation sequencing data (i.e. short reads) have been useful to determine certain types of organelle RNAs, particularly noncoding RNAs. We then explain how third-generation (long-read) RNA-Seq data represent the new frontier in organelle transcriptomics. We show that public repositories (e.g. NCBI SRA) already contain enough data for inter-phyla comparative studies and argue that organelle biologists can benefit from such data. We discuss the prospects of using publicly available sequencing data for organelle-focused studies and examine the challenges of such an approach. We highlight that the lack of a comprehensive database dedicated to organelle genomics/transcriptomics is a major impediment to the development of a field with implications in basic and applied science.

2.
Trends Plant Sci ; 29(6): 626-629, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38360479

RESUMO

Plant mitochondrial and plastid genomes typically show pervasive, genome-wide transcription. Little is known, however, about the utility of organelle noncoding RNAs, which often make up most of the transcriptome. Here, we suggest that long-read sequencing data combined with dedicated RNA databases could help identify putative functional organelle noncoding transcripts.


Assuntos
Genoma de Planta , Transcriptoma , Transcriptoma/genética , Genoma de Planta/genética , RNA não Traduzido/genética , Genoma Mitocondrial/genética , Transcrição Gênica , RNA de Plantas/genética , Plantas/genética
3.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36502372

RESUMO

LTR-retrotransposons are the most abundant repeat sequences in plant genomes and play an important role in evolution and biodiversity. Their characterization is of great importance to understand their dynamics. However, the identification and classification of these elements remains a challenge today. Moreover, current software can be relatively slow (from hours to days), sometimes involve a lot of manual work and do not reach satisfactory levels in terms of precision and sensitivity. Here we present Inpactor2, an accurate and fast application that creates LTR-retrotransposon reference libraries in a very short time. Inpactor2 takes an assembled genome as input and follows a hybrid approach (deep learning and structure-based) to detect elements, filter partial sequences and finally classify intact sequences into superfamilies and, as very few tools do, into lineages. This tool takes advantage of multi-core and GPU architectures to decrease execution times. Using the rice genome, Inpactor2 showed a run time of 5 minutes (faster than other tools) and has the best accuracy and F1-Score of the tools tested here, also having the second best accuracy and specificity only surpassed by EDTA, but achieving 28% higher sensitivity. For large genomes, Inpactor2 is up to seven times faster than other available bioinformatics tools.


Assuntos
Aprendizado Profundo , Retroelementos , Retroelementos/genética , Sequências Repetidas Terminais/genética , Genoma de Planta , Software , Evolução Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...