Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830955

RESUMO

Endometrial cancer (EC) is a common gynecological malignancy and the fourth most common malignancy in European and North American women. Amongst EC, the advanced serous, p53-mutated, and pMMR subtypes have the highest risk of relapse despite optimal standard of care therapy. At present, there is no standard of care maintenance treatment to prevent relapse among these high-risk patients. Vaccines are a form of immunotherapy that can potentially increase the immunogenicity of pMMR, serous, and p53-mutated tumors to render them responsive to check point inhibitor-based immunotherapy. We demonstrate, for the first time, the feasibility of generating a personalized dendritic cell vaccine pulsed with peptide neoantigens in a patient with pMMR, p53-mutated, and serous endometrial adenocarcinoma (SEC). The personalized vaccine was administered in combination with systemic chemotherapy to treat an inoperable metastatic recurrence. This treatment association demonstrated the safety and immunogenicity of the personalized dendritic cell vaccine. Interestingly, a complete oncological response was obtained with respect to both radiological assessment and the tumor marker CA-125.

2.
Cytotherapy ; 22(12): 780-791, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33069566

RESUMO

BACKGROUND AIMS: Several studies report on Good Manufacturing Process (GMP)-compliant manufacturing protocols for the ex vivo expansion of tumor-infiltrating lymphocytes (TILs) for the treatment of patients with refractory melanoma and other solid malignancies. Further opportunities for improvements in terms of ergonomy and operating time have been identified. METHODS: To enable GMP-compliant TILs production for adoptive cell therapy needs, a simple automated and reproducible protocol for TILs manufacturing with the use of a closed system was developed and implemented at the authors' institution. RESULTS: This protocol enabled significant operating time reduction during TILs expansion while allowing the generation of high-quality TILs products. CONCLUSIONS: A simplified and efficient method of TILs expansion will enable the broadening of individualized tumor therapy and will increase patients' access to state-of-the-art TILs adoptive cell therapy treatment.


Assuntos
Técnicas de Cultura de Células/métodos , Hospitais , Linfócitos do Interstício Tumoral/citologia , Automação , Contagem de Células , Proliferação de Células , Criopreservação , Feminino , Humanos , Cinética , Fenótipo , Controle de Qualidade
3.
J Transl Med ; 17(1): 391, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31771601

RESUMO

BACKGROUND: Most ovarian cancer patients are diagnosed at a late stage with 85% of them relapsing after surgery and standard chemotherapy; for this reason, new treatments are urgently needed. Ovarian cancer has become a candidate for immunotherapy by reason of their expression of shared tumor-associated antigens (TAAs) and private mutated neoantigens (NeoAgs) and the recognition of the tumor by the immune system. Additionally, the presence of intraepithelial tumor infiltrating lymphocytes (TILs) is associated with improved progression-free and overall survival of patients with ovarian cancer. The aim of active immunotherapy, including vaccination, is to generate a new anti-tumor response and amplify an existing immune response. Recently developed NeoAgs-based cancer vaccines have the advantage of being more tumor specific, reducing the potential for immunological tolerance, and inducing robust immunogenicity. METHODS: We propose a randomized phase I/II study in patients with advanced ovarian cancer to compare the immunogenicity and to assess safety and feasibility of two personalized DC vaccines. After standard of care surgery and chemotherapy, patients will receive either a novel vaccine consisting of autologous DCs pulsed with up to ten peptides (PEP-DC), selected using an agnostic, yet personalized, epitope discovery algorithm, or a sequential combination of a DC vaccine loaded with autologous oxidized tumor lysate (OC-DC) prior to an equivalent PEP-DC vaccine. All vaccines will be administered in combination with low-dose cyclophosphamide. This study is the first attempt to compare the two approaches and to use NeoAgs-based vaccines in ovarian cancer in the adjuvant setting. DISCUSSION: The proposed treatment takes advantage of the beneficial effects of pre-treatment with OC-DC prior to PEP-DC vaccination, prompting immune response induction against a wide range of patient-specific antigens, and amplification of pre-existing NeoAgs-specific T cell clones. Trial registration This trial is already approved by Swissmedic (Ref.: 2019TpP1004) and will be registered at http://www.clinicaltrials.gov before enrollment opens.


Assuntos
Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Neoplasias Císticas, Mucinosas e Serosas/patologia , Neoplasias Císticas, Mucinosas e Serosas/terapia , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Peptídeos/imunologia , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Feminino , Humanos , Gradação de Tumores , Estadiamento de Neoplasias , Transplante Autólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...