Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965447

RESUMO

TFEB, a bHLH-leucine zipper transcription factor belonging to the MiT/TFE family, globally modulates cell metabolism by regulating autophagy and lysosomal functions. Remarkably, loss of TFEB in mice causes embryonic lethality due to severe defects in placentation associated with aberrant vascularization and resulting hypoxia. However, the molecular mechanism underlying this phenotype has remained elusive. By integrating in vivo analyses with multi-omics approaches and functional assays, we have uncovered an unprecedented function for TFEB in promoting the formation of a functional syncytiotrophoblast in the placenta. Our findings demonstrate that constitutive loss of TFEB in knock-out mice is associated with defective formation of the syncytiotrophoblast layer. Indeed, using in vitro models of syncytialization, we demonstrated that TFEB translocates into the nucleus during syncytiotrophoblast formation and binds to the promoters of crucial placental genes, including genes encoding fusogenic proteins (Syncytin-1 and Syncytin-2) and enzymes involved in steroidogenic pathways, such as CYP19A1, the rate-limiting enzyme for the synthesis of 17ß-Estradiol (E2). Conversely, TFEB depletion impairs both syncytial fusion and endocrine properties of syncytiotrophoblast, as demonstrated by a significant decrease in the secretion of placental hormones and E2 production. Notably, restoration of TFEB expression resets syncytiotrophoblast identity. Our findings identify that TFEB controls placental development and function by orchestrating both the transcriptional program underlying trophoblast fusion and the acquisition of endocrine function, which are crucial for the bioenergetic requirements of embryonic development.

2.
Stem Cell Reports ; 19(5): 729-743, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38701777

RESUMO

Embryonic stem cells (ESCs) are defined as stem cells with self-renewing and differentiation capabilities. These unique properties are tightly regulated and controlled by complex genetic and molecular mechanisms, whose understanding is essential for both basic and translational research. A large number of studies have mostly focused on understanding the molecular mechanisms governing pluripotency and differentiation of ESCs, while the regulation of proliferation has received comparably less attention. Here, we investigate the role of ZZZ3 (zinc finger ZZ-type containing 3) in human ESCs homeostasis. We found that knockdown of ZZZ3 negatively impacts ribosome biogenesis, translation, and mTOR signaling, leading to a significant reduction in cell proliferation. This process occurs without affecting pluripotency, suggesting that ZZZ3-depleted ESCs enter a "dormant-like" state and that proliferation and pluripotency can be uncoupled also in human ESCs.


Assuntos
Proliferação de Células , Homeostase , Células-Tronco Embrionárias Humanas , Ribossomos , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Serina-Treonina Quinases TOR/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Ribossomos/metabolismo , Diferenciação Celular/genética , Biossíntese de Proteínas
3.
Brain ; 147(6): 2023-2037, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38242634

RESUMO

DNAJC6 encodes auxilin, a co-chaperone protein involved in clathrin-mediated endocytosis (CME) at the presynaptic terminal. Biallelic mutations in DNAJC6 cause a complex, early-onset neurodegenerative disorder characterized by rapidly progressive parkinsonism-dystonia in childhood. The disease is commonly associated with additional neurodevelopmental, neurological and neuropsychiatric features. Currently, there are no disease-modifying treatments for this condition, resulting in significant morbidity and risk of premature mortality. To investigate the underlying disease mechanisms in childhood-onset DNAJC6 parkinsonism, we generated induced pluripotent stem cells (iPSC) from three patients harbouring pathogenic loss-of-function DNAJC6 mutations and subsequently developed a midbrain dopaminergic neuronal model of disease. When compared to age-matched and CRISPR-corrected isogenic controls, the neuronal cell model revealed disease-specific auxilin deficiency as well as disturbance of synaptic vesicle recycling and homeostasis. We also observed neurodevelopmental dysregulation affecting ventral midbrain patterning and neuronal maturation. To explore the feasibility of a viral vector-mediated gene therapy approach, iPSC-derived neuronal cultures were treated with lentiviral DNAJC6 gene transfer, which restored auxilin expression and rescued CME. Our patient-derived neuronal model provides deeper insights into the molecular mechanisms of auxilin deficiency as well as a robust platform for the development of targeted precision therapy approaches.


Assuntos
Auxilinas , Terapia Genética , Proteínas de Choque Térmico HSP40 , Células-Tronco Pluripotentes Induzidas , Transtornos Parkinsonianos , Humanos , Terapia Genética/métodos , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/terapia , Transtornos Parkinsonianos/metabolismo , Auxilinas/genética , Auxilinas/metabolismo , Masculino , Feminino , Neurônios Dopaminérgicos/metabolismo , Mutação , Sinapses/genética , Sinapses/metabolismo , Endocitose/fisiologia , Endocitose/genética , Criança
4.
Biochem Biophys Res Commun ; 679: 6-14, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37651872

RESUMO

Aromatic amino acid decarboxylase is a pyridoxal 5'-phosphate-dependent enzyme responsible for the synthesis of the neurotransmitters, dopamine and serotonin. Here, by a combination of bioinformatic predictions and analyses, phosphorylation assays, spectroscopic investigations and activity measurements, we determined that Ser-193, a conserved residue located at the active site, can be phosphorylated, increasing catalytic efficiency. In order to determine the molecular basis for this functional improvement, we determined the structural and kinetic properties of the site-directed variants S193A, S193D and S193E. While S193A retains 27% of the catalytic efficiency of wild-type, the two acidic side chain variants are impaired in catalysis with efficiencies of about 0.15% with respect to the wild-type. Thus, even if located at the active site, Ser-193 is not essential for enzyme activity. We advance the idea that this residue is fundamental for the correct architecture of the active site in terms of network of interactions triggering catalysis. This role has been compared with the properties of the Ser-194 of the highly homologous enzyme histidine decarboxylase whose catalytic loop is visible in the spatial structure, allowing us to propose the validation for the effect of the phosphorylation. The effect could be interesting for AADC deficiency, a rare monogenic disease, whose broad clinical phenotype could be also related to post translational AADC modifications.

5.
EMBO Rep ; 24(4): e55235, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36847616

RESUMO

In human embryos, naive pluripotent cells of the inner cell mass (ICM) generate epiblast, primitive endoderm and trophectoderm (TE) lineages, whence trophoblast cells derive. In vitro, naive pluripotent stem cells (PSCs) retain this potential and efficiently generate trophoblast stem cells (TSCs), while conventional PSCs form TSCs at low efficiency. Transient histone deacetylase and MEK inhibition combined with LIF stimulation is used to chemically reset conventional to naive PSCs. Here, we report that chemical resetting induces the expression of both naive and TSC markers and of placental imprinted genes. A modified chemical resetting protocol allows for the fast and efficient conversion of conventional PSCs into TSCs, entailing shutdown of pluripotency genes and full activation of the trophoblast master regulators, without induction of amnion markers. Chemical resetting generates a plastic intermediate state, characterised by co-expression of naive and TSC markers, after which cells steer towards one of the two fates in response to the signalling environment. The efficiency and rapidity of our system will be useful to study cell fate transitions and to generate models of placental disorders.


Assuntos
Células-Tronco Pluripotentes , Trofoblastos , Humanos , Feminino , Gravidez , Trofoblastos/metabolismo , Ativação Transcricional , Placenta , Diferenciação Celular
6.
Front Genome Ed ; 3: 630600, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34713254

RESUMO

Therapeutic advances for neurological disorders are challenging due to limited accessibility of the human central nervous system and incomplete understanding of disease mechanisms. Many neurological diseases lack precision treatments, leading to significant disease burden and poor outcome for affected patients. Induced pluripotent stem cell (iPSC) technology provides human neuronal cells that facilitate disease modeling and development of therapies. The use of genome editing, in particular CRISPR-Cas9 technology, has extended the potential of iPSCs, generating new models for a number of disorders, including Alzheimers and Parkinson Disease. Editing of iPSCs, in particular with CRISPR-Cas9, allows generation of isogenic pairs, which differ only in the disease-causing mutation and share the same genetic background, for assessment of phenotypic differences and downstream effects. Moreover, genome-wide CRISPR screens allow high-throughput interrogation for genetic modifiers in neuronal phenotypes, leading to discovery of novel pathways, and identification of new therapeutic targets. CRISPR-Cas9 has now evolved beyond altering gene expression. Indeed, fusion of a defective Cas9 (dCas9) nuclease with transcriptional repressors or activation domains allows down-regulation or activation of gene expression (CRISPR interference, CRISPRi; CRISPR activation, CRISPRa). These new tools will improve disease modeling and facilitate CRISPR and cell-based therapies, as seen for epilepsy and Duchenne muscular dystrophy. Genome engineering holds huge promise for the future understanding and treatment of neurological disorders, but there are numerous barriers to overcome. The synergy of iPSC-based model systems and gene editing will play a vital role in the route to precision medicine and the clinical translation of genome editing-based therapies.

7.
Sci Transl Med ; 13(594)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011628

RESUMO

Most inherited neurodegenerative disorders are incurable, and often only palliative treatment is available. Precision medicine has great potential to address this unmet clinical need. We explored this paradigm in dopamine transporter deficiency syndrome (DTDS), caused by biallelic loss-of-function mutations in SLC6A3, encoding the dopamine transporter (DAT). Patients present with early infantile hyperkinesia, severe progressive childhood parkinsonism, and raised cerebrospinal fluid dopamine metabolites. The absence of effective treatments and relentless disease course frequently leads to death in childhood. Using patient-derived induced pluripotent stem cells (iPSCs), we generated a midbrain dopaminergic (mDA) neuron model of DTDS that exhibited marked impairment of DAT activity, apoptotic neurodegeneration associated with TNFα-mediated inflammation, and dopamine toxicity. Partial restoration of DAT activity by the pharmacochaperone pifithrin-µ was mutation-specific. In contrast, lentiviral gene transfer of wild-type human SLC6A3 complementary DNA restored DAT activity and prevented neurodegeneration in all patient-derived mDA lines. To progress toward clinical translation, we used the knockout mouse model of DTDS that recapitulates human disease, exhibiting parkinsonism features, including tremor, bradykinesia, and premature death. Neonatal intracerebroventricular injection of human SLC6A3 using an adeno-associated virus (AAV) vector provided neuronal expression of human DAT, which ameliorated motor phenotype, life span, and neuronal survival in the substantia nigra and striatum, although off-target neurotoxic effects were seen at higher dosage. These were avoided with stereotactic delivery of AAV2.SLC6A3 gene therapy targeted to the midbrain of adult knockout mice, which rescued both motor phenotype and neurodegeneration, suggesting that targeted AAV gene therapy might be effective for patients with DTDS.


Assuntos
Terapia Genética , Células-Tronco Pluripotentes Induzidas , Transtornos Parkinsonianos , Animais , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/terapia , Substância Negra/metabolismo
8.
Brain ; 144(8): 2443-2456, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-33734312

RESUMO

Aromatic l-amino acid decarboxylase (AADC) deficiency is a complex inherited neurological disorder of monoamine synthesis which results in dopamine and serotonin deficiency. The majority of affected individuals have variable, though often severe cognitive and motor delay, with a complex movement disorder and high risk of premature mortality. For most, standard pharmacological treatment provides only limited clinical benefit. Promising gene therapy approaches are emerging, though may not be either suitable or easily accessible for all patients. To characterize the underlying disease pathophysiology and guide precision therapies, we generated a patient-derived midbrain dopaminergic neuronal model of AADC deficiency from induced pluripotent stem cells. The neuronal model recapitulates key disease features, including absent AADC enzyme activity and dysregulated dopamine metabolism. We observed developmental defects affecting synaptic maturation and neuronal electrical properties, which were improved by lentiviral gene therapy. Bioinformatic and biochemical analyses on recombinant AADC predicted that the activity of one variant could be improved by l-3,4-dihydroxyphenylalanine (l-DOPA) administration; this hypothesis was corroborated in the patient-derived neuronal model, where l-DOPA treatment leads to amelioration of dopamine metabolites. Our study has shown that patient-derived disease modelling provides further insight into the neurodevelopmental sequelae of AADC deficiency, as well as a robust platform to investigate and develop personalized therapeutic approaches.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Descarboxilases de Aminoácido-L-Aromático/deficiência , Dopaminérgicos/farmacologia , Células-Tronco Pluripotentes Induzidas , Levodopa/farmacologia , Neurogênese , Neurônios/efeitos dos fármacos , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Humanos
9.
Amino Acids ; 52(8): 1089-1105, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32844248

RESUMO

The versatility of reactions catalyzed by pyridoxal 5'-phosphate (PLP) enzymes is largely due to the chemistry of their extraordinary catalyst. PLP is necessary for many reactions involving amino acids. Reaction specificity is controlled by the orientation of the external aldimine intermediate that is formed upon addition of the amino acidic substrate to the coenzyme. The breakage of a specific bond of the external aldimine gives rise to a carbanionic intermediate. From this point, the different reaction pathways diverge leading to multiple activities: transamination, decarboxylation, racemization, elimination, and synthesis. A significant novelty appeared approximately 30 years ago when it was reported that some PLP-dependent decarboxylases are able to consume molecular oxygen transforming an amino acid into a carbonyl compound. These side paracatalytic reactions could be particularly relevant for human health, also considering that some of these enzymes are responsible for the synthesis of important neurotransmitters such as γ-aminobutyric acid, dopamine, and serotonin, whose dysregulation under oxidative conditions could have important implications in neurodegenerative states. However, the reactivity of PLP enzymes with dioxygen is not confined to mammals/animals. In fact, some plant PLP decarboxylases have been reported to catalyze oxidative reactions producing carbonyl compounds. Moreover, other recent reports revealed the existence of new oxidase activities catalyzed by new PLP enzymes, MppP, RohP, Ind4, CcbF, PvdN, Cap15, and CuaB. These PLP enzymes belong to the bacterial and fungal kingdoms and are present in organisms synthesizing bioactive compounds. These new PLP activities are not paracatalytic and could only scratch the surface on a wider and unexpected catalytic capability of PLP enzymes.


Assuntos
Aminoácidos/biossíntese , Carboxiliases/química , Carboxiliases/metabolismo , Fosfato de Piridoxal/química , Aminoácidos/química , Animais , Bactérias/enzimologia , Biocatálise , Dopa Descarboxilase/metabolismo , Fungos/enzimologia , Humanos , Oxirredução , Oxigênio/metabolismo , Plantas/enzimologia
10.
Arch Biochem Biophys ; 682: 108263, 2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-31953134

RESUMO

AADC deficiency is a rare genetic disease caused by mutations in the gene of aromatic amino acid decarboxylase, the pyridoxal 5'-phosphate dependent enzyme responsible for the synthesis of dopamine and serotonin. Here, following a biochemical approach together with an in silico bioinformatic analysis, we present a structural and functional characterization of 13 new variants of AADC. The amino acid substitutions are spread over the entire protein from the N-terminal (V60A), to its loop1 (H70Y and F77L), to the large domain (G96R) and its various motifs, i.e. loop2 (A110E), or a core ß-barrel either on the surface (P210L, F251S and E283A) or in a more hydrophobic milieu (L222P, F237S and W267R) or loop3 (L353P), and to the C-terminal domain (R453C). Results show that the ß-barrel variants exhibit a low solubility and those belonging to the surface tend to aggregate in their apo form, leading to the identification of a new enzymatic phenotype for AADC deficiency. Moreover, five variants of residues belonging to the large interface of AADC (V60A, G96R, A110E, L353P and R453C) are characterized by a decreased catalytic efficiency. The remaining ones (H70Y and F77L) present features typical of apo-to-holo impaired transition. Thus, defects in catalysis or in the acquirement of the correct holo structure are due not only to specific local domain effects but also to long-range effects at either the protein surface or the subunit interface. Altogether, the new characterized enzymatic phenotypes represent a further step in the elucidation of the molecular basis for the disease.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Descarboxilases de Aminoácido-L-Aromático/deficiência , Fenótipo , Algoritmos , Motivos de Aminoácidos , Descarboxilases de Aminoácido-L-Aromático/química , Descarboxilases de Aminoácido-L-Aromático/genética , Catálise , Biologia Computacional , Escherichia coli , Variação Genética , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Mutagênese Sítio-Dirigida , Mutação , Domínios Proteicos , Espalhamento de Radiação , Solubilidade , Espectrofotometria , Relação Estrutura-Atividade , Temperatura
11.
Biochemistry ; 57(44): 6336-6348, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30346159

RESUMO

Histidine decarboxylase is a pyridoxal 5'-phosphate enzyme catalyzing the conversion of histidine to histamine, a bioactive molecule exerting its role in many modulatory processes. The human enzyme is involved in many physiological functions, such as neurotransmission, gastrointestinal track function, cell growth, and differentiation. Here, we studied the functional properties of the human enzyme and, in particular, the effects exerted at the protein level by two cysteine residues: Cys-180 and Cys-418. Surprisingly, the enzyme exists in an equilibrium between a reduced and an oxidized form whose extent depends on the redox state of Cys-180. Moreover, we determined that (i) the two enzymatic redox species exhibit modest structural changes in the coenzyme microenvironment and (ii) the oxidized form is slightly more active and stable than the reduced one. These data are consistent with the model proposed by bioinformatics analyses and molecular dynamics simulations in which the Cys-180 redox state could be responsible for a structural transition affecting the C-terminal domain reorientation leading to active site alterations. Furthermore, the biochemical properties of the purified C180S and C418S variants reveal that C180S behaves like the reduced form of the wild-type enzyme, while C418S is sensitive to reductants like the wild-type enzyme, thus allowing the identification of Cys-180 as the redox sensitive switch. On the other hand, Cys-418 appears to be a residue involved in aggregation propensity. A possible role for Cys-180 as a regulatory switch in response to different cellular redox conditions could be suggested.


Assuntos
Cisteína/química , Histidina Descarboxilase/química , Histidina Descarboxilase/metabolismo , Mutação , Fosfato de Piridoxal/metabolismo , Sequência de Aminoácidos , Catálise , Domínio Catalítico , Cristalografia por Raios X , Cisteína/genética , Cisteína/metabolismo , Histidina Descarboxilase/genética , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução , Conformação Proteica , Homologia de Sequência
12.
Amino Acids ; 50(2): 205-215, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29204749

RESUMO

Pyridoxal 5'-phosphate (PLP)-dependent enzymes catalyze a wide range of reactions of amino acids and amines, with the exception of glycogen phosphorylase which exhibits peculiar both substrate preference and chemical mechanism. They represent about 4% of the gene products in eukaryotic cells. Although structure-function investigations regarding these enzymes are copious, their regulation by post-translational modifications is largely unknown. Protein phosphorylation is the most common post-translational modification fundamental in mediating diverse cellular functions. This review aims at summarizing the current knowledge on regulation of PLP enzymes by phosphorylation. Starting from the paradigmatic PLP-dependent glycogen phosphorylase, the first phosphoprotein discovered, we collect data in literature regarding functional phosphorylation events of eleven PLP enzymes belonging to different fold types and discuss the impact of the modification in affecting their activity and localization as well as the implications on the pathogenesis of diseases in which many of these enzymes are involved. The pivotal question is to correlate the structural consequences of phosphorylation among PLP enzymes of different folds with the functional modifications exerted in terms of activity or conformational changes or others. Although the literature shows that the phosphorylation of PLP enzymes plays important roles in mediating diverse cellular functions, our recapitulation of clue findings in the field makes clear that there is still much to be learnt. Besides mass spectrometry-based proteomic analyses, further biochemical and structural studies on purified native proteins are imperative to fully understand and predict how phosphorylation regulates PLP enzymes and to find the relationship between addition of a phosphate moiety and physiological response.


Assuntos
Enzimas/química , Enzimas/metabolismo , Fosfatos/metabolismo , Fosfato de Piridoxal/metabolismo , Aminoácidos/metabolismo , Glicogênio Fosforilase/química , Glicogênio Fosforilase/metabolismo , Humanos , Modelos Moleculares , Fosforilação , Dobramento de Proteína , Relação Estrutura-Atividade
13.
Curr Med Chem ; 24(3): 226-244, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27881066

RESUMO

Aromatic amino acid, cysteine sulfinic acid, glutamate and histidine decarboxylases, belonging to group II of pyridoxal 5'-phosphate-dependent enzymes, catalyze the synthesis of dopamine/serotonin, hypotaurine, γ-aminobutyric acid and histamine, respectively. Considering that these reaction products are all essential bioactive molecules, group II decarboxylases have been long studied from an evolutionary, biochemical and pharmacological standpoint. Despite the fact that they all belong to a common fold-type, during evolution each decarboxylase has evolved unique structural elements responsible for its substrate specificity. Combining a literature update with bioinformatic analyses, this review focuses on some structural determinants shared by these enzymes revealing their intrinsic substrate specificity and highlighting the importance of some residues/regions for catalytic competence. In particular, two key structural features emerge: 1) a mobile catalytic loop, and 2) an open-to-close conformation accompanying the apo-holo transition. Drawing attention on these elements is crucial in correlating subtle structural modifications to functional properties for the understanding, at a molecular level of a pathological condition. This is corroborated by the increasingly important role played by these decarboxylases in several different pathological states (autoimmune diseases, type I diabetes, Parkinson's disease, aromatic amino acid decarboxylase deficiency, Tourette's syndrome and cholangiocarcinoma).


Assuntos
Carboxiliases/metabolismo , Fosfato de Piridoxal/metabolismo , Sequência de Aminoácidos , Animais , Carboxiliases/antagonistas & inibidores , Carboxiliases/química , Inibidores Enzimáticos/farmacologia , Humanos
14.
Biochim Biophys Acta ; 1864(6): 676-682, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26994895

RESUMO

We report here a clinical case of a patient with a novel mutation (Arg347→Gly) in the gene encoding aromatic amino acid decarboxylase (AADC) that is associated with AADC deficiency. The variant R347G in the purified recombinant form exhibits, similarly to the pathogenic mutation R347Q previously studied, a 475-fold drop of kcat compared to the wild-type enzyme. In attempting to unravel the reason(s) for this catalytic defect, we have carried out bioinformatics analyses of the crystal structure of AADC-carbidopa complex with the modelled catalytic loop (residues 328-339). Arg347 appears to interact with Phe103, as well as with both Leu333 and Asp345. We have then prepared and characterized the artificial F103L, R347K and D345A mutants. F103L, D345A and R347K exhibit about 13-, 97-, and 345-fold kcat decrease compared to the wild-type AADC, respectively. However, unlike F103L, the R347G, R347K and R347Q mutants as well as the D345A variant appear to be more defective in catalysis than in protein folding. Moreover, the latter mutants, unlike the wild-type protein and the F103L variant, share a peculiar binding mode of dopa methyl ester consisting of formation of a quinonoid intermediate. This finding strongly suggests that their catalytic defects are mainly due to a misplacement of the substrate at the active site. Taken together, our results highlight the importance of the Arg347-Leu333-Asp345 hydrogen-bonds network in the catalysis of AADC and reveal the molecular basis for the pathogenicity of the variants R347. Following the above results, a therapeutic treatment for patients bearing the mutation R347G is proposed.


Assuntos
Descarboxilases de Aminoácido-L-Aromático/metabolismo , Mutação , Descarboxilases de Aminoácido-L-Aromático/genética , Catálise , Modelos Moleculares , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...