Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomater Sci Polym Ed ; 35(8): 1273-1320, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38441976

RESUMO

Nasal cartilage diseases and injuries are known as significant challenges in reconstructive medicine, affecting a substantial number of individuals worldwide. In recent years, the advent of three-dimensional (3D) bioprinting has emerged as a promising approach for nasal cartilage reconstruction, offering potential breakthroughs in the field of regenerative medicine. This paper provides an overview of the methods and challenges associated with 3D bioprinting technologies in the procedure of reconstructing nasal cartilage tissue. The process of 3D bioprinting entails generating a digital 3D model using biomedical imaging techniques and computer-aided design to integrate both internal and external scaffold features. Then, bioinks which consist of biomaterials, cell types, and bioactive chemicals, are applied to facilitate the precise layer-by-layer bioprinting of tissue-engineered scaffolds. After undergoing in vitro and in vivo experiments, this process results in the development of the physiologically functional integrity of the tissue. The advantages of 3D bioprinting encompass the ability to customize scaffold design, enabling the precise incorporation of pore shape, size, and porosity, as well as the utilization of patient-specific cells to enhance compatibility. However, various challenges should be considered, including the optimization of biomaterials, ensuring adequate cell viability and differentiation, achieving seamless integration with the host tissue, and navigating regulatory attention. Although numerous studies have demonstrated the potential of 3D bioprinting in the rebuilding of such soft tissues, this paper covers various aspects of the bioprinted tissues to provide insights for the future development of repair techniques appropriate for clinical use.


Assuntos
Bioimpressão , Cartilagens Nasais , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Animais
2.
Int J Biol Macromol ; 253(Pt 8): 127448, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37844811

RESUMO

Regenerative medicine confronts various obstacles, such as creating and advancing biomaterials. Besides being safe, such materials should promote cellular activity. Polycaprolactone (PCL) has numerous medical applications as an engineering material. However, these polymers lack hydrophilicity. Herein, chitosan (CS)/collagen (COL)/polycaprolactone hydrogel films (CSCPs) were synthesized with different weight ratios of PCL; specifically, CS/COL (CSC): PCL content of 1:3, 1:6, and 1:9. For this purpose, novel COL immobilization on CS was performed via covalent attachment. Following the addition of PCL to CSC hydrogel, the resulting CSCP hydrogel films were characterized using tensile measurements, TGA, XRD, FTIR, and FE-SEM. A greater PCL content increases the elongation at break from 134.8 to 369.5 % and the tensile strength of the hydrogel films from 4.8 to 18.4 MPa. The hydrophobicity of prepared specimens was assessed through water absorption and contact-angle tests. For CSCP3 to CSCP9, the water contact angle increased from 61.03° to 70.82°. After 48 days, CSCP6 and CSCP9 hydrogel films demonstrated a slow rate of degradation, losing <15 % of their weight. Moreover, all three types of hydrogel films exhibited high biocompatibility (higher than 95 % after three days), as confirmed by the MTT assay. The hemolysis rates of CSCP hydrogel films were <2 %, which could be deemed safe for contact with a blood environment. The presence of no costly and bio-based crosslinking agents and desired characteristics for tissue engineering applications suggest that CSCP hydrogel films may be promising candidates for use in artificial tendons.


Assuntos
Quitosana , Alicerces Teciduais , Hidrogéis/farmacologia , Poliésteres/farmacologia , Engenharia Tecidual/métodos , Colágeno , Água , Tendões , Interações Hidrofóbicas e Hidrofílicas
3.
Crit Rev Food Sci Nutr ; : 1-28, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37691403

RESUMO

Encapsulating curcumin (CUR) in nanocarriers such as liposomes, polymeric micelles, silica nanoparticles, protein-based nanocarriers, solid lipid nanoparticles, and nanocrystals could be efficient for a variety of industrial and biomedical applications. Nanofibers containing CUR represent a stable polymer-drug carrier with excellent surface-to-volume ratios for loading and cell interactions, tailored porosity for controlled CUR release, and diverse properties that fit the requirements for numerous applications. Despite the mentioned benefits, electrospinning is not capable of producing fibers from multiple polymers and biopolymers, and the product's effectiveness might be affected by various machine- and material-dependent parameters like the voltage and the flow rate of the electrospinning process. This review delves into the current and innovative recent research on nanofibers containing CUR and their various applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...